Название яда для человека. Самые сильные яды в мире

1. Введение …………………………………………………………………………………………………………………………………………………

2. Понятие о вредном веществе ……………………………………………………………………………………………………………….

3. Основные типы классификаций вредных веществ (ядов) и отравлений…………………………………………..

4. Общая характеристика действия промышленных ядов на организм (ССС, ЦНС, ЖКТ, система

крови,кожа)……………………………………………………………………………………………………………………………………………….

5. Острые и хронические отравления………………………………………………………………………………………………………

6. Понятие предельно-допустимой концентрации ………………………………………………………………………………

7. Промышленные отравления ртутью. Меры профилактики……………………………………………………………..

8. Промышленные отравления окислами азота. Меры профилактики………………………………………………

9. Промышленные отравления бериллием. Меры профилактики …………………………………………………..

10. Промышленные отравления свинцом. Меры профилактики………………………………………………………..

11. Промышленные отравления окисью углерода. Меры профилактики………………………………………….

12. Промышленные отравлния органическими растворителями.Меры профилактики…………………..

13. Промышленные отравлния сернистом газом………………………………………………………………………………….

13. Профилактика профессиональных отравлений и заболеваний…………………………………………………….

14. Список литературы…………………………………………………………………………………………………………………………….

Введение

Человеческий организм состоит из химических соединений, химических элементов, и окружающая его среда, живая и неживая, также состоит из химических соединений и элементов. Жизнь всего живого на планете сопровождается перемещением и превращениями веществ. Но вещества в природе должны находиться в определенном месте и в определенном количестве и перемещаться с определенной скоростью. При нарушении пределов, случайном, непреднамеренном или искусственно вызванном, возникают серьезные нарушения в функционировании природных объектов и систем или в жизни человека.

Проблема влияния веществ на живые организмы насчитывает более чем тысячелетнюю историю. Вглубь веков уходят предания о встречах людей с ядовитыми растениями и животными, об использовании ядов для охоты, в военных целях, в религиозных культах и т.п. Учение о вредном действии веществ на организм человека разрабатывали Гиппократ, Гален, Парацельс, Рамацзини.

Развитие химии в XVIII-XIX веках дало новый толчок развитию учения о ядах, потерявших к тому времени свое мистическое значение. Это учение начало опираться на знание строения и свойств вещества. Научно-техническая и промышленная революция ХХ века сделала проблему воздействия веществ на живые объекты особенно актуальной. Научная и хозяйственная деятельность человека привела в настоящее время к воздействию на человека и окружающую среду миллионов химических соединений, многие из которых раньше были несвойственны нашей биосфере.

Понятие о вредном веществе

Парацельс говорил: «Все есть яд и ничто не лишено ядовитости.». Это высказывание понимаем так, что одно и то же вещество может быть вредным (ядом), лекарством и необходимым для жизни средством в зависимости от его количества и условий взаимодействия с организмом.

Вредным называется вещество, которое при контакте с организмом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.

Чужеродные для организмов соединения называют ксенобиотиками. К ним относятся промышленные загрязнения, препараты бытовой химии, пестициды, лекарственные средства. Такие вещества не образуются в организме, а синтезируются человеком искусственным путем.

Вредные вещества характеризуются степенью токсичности и опасности. Под токсичностью вещества понимают способность наносить вред живому. Токсичность – это мера несовместимости вещества с жизнью.

Опасность вещества – это довольно широкое понятие, характеризующее вероятность вредного воздействия вещества в реальных условиях производства и применения.

Основные типы классификаций вредных веществ (ядов) и отравлений

Имеется большое количество различных классификаций вредных веществ и отравлений, отражающих с одной стороны многообразие свойств веществ и их биологического действия, с другой – разнообразие подходов к данной проблеме различных специалистов.

Классификация веществ по характеру воздействия на организм и общие требования безопасности регламентируются ГОСТ 12.0.003–74*. Согласно ГОСТ вещества подразделяются на токсические, вызывающие отравление всего организма или поражающие отдельные системы (ЦНС, кроветворения), вызывающие патологические изменения печени, почек; раздражающие – вызывающие раздражение слизистых оболочек дыхательных путей, глаз, легких, кожных покровов; сенсибилизирующие, действующие как аллергены (формальдегид, растворители, лаки на основе нитро- и нитрозосоединений и др.); мутагенные, приводящие к нарушению генетического кода, изменению наследственной информации (свинец, марганец, радиоактивные изотопы и др.); канцерогенные, вызывающие, как правило, злокачественные новообразования (циклические амины, ароматические углеводороды, хром, никель, асбест и др.); влияющие на репродуктивную (детородную) функцию (ртуть, свинец, стирол, радиоактивные изотопы и др.).

Три последних вида воздействия вредных веществ – мутагенное, канцерогенное, влияние на репродуктивную функцию, а также ускорение процесса старения сердечно-сосудистой системы относят к отдаленным последствиям влияния химических соединений на организм. Это специфическое действие, которое проявляется в отдаленные периоды, спустя годы и даже десятилетия. Отмечается появление различных эффектов и в последующих поколениях. Эта классификация не учитывает агрегатного состояния вещества, тогда как для большой группы аэрозолей, не обладающих выраженной токсичностью, следует выделить фиброгенный эффект действия ее на организм. К ним относятся аэрозоли дезинтеграции угля, угольнопородные аэрозоли, аэрозоли кокса (каменноугольного, пекового, нефтяного, сланцевого), саж, алмазов, углеродных волокнистых материалов, аэрозоли (пыли) животного и растительного происхождения, силикатсодержащие пыли, силикаты, алюмосиликаты, аэрозоли дезинтеграции и конденсации металлов, кремнийсодержащие пыли.

Химические вещества (органические, неорганические, элементорганические) в зависимости от их практического использования классифицируются на:

– промышленные яды, используемые в производстве: например, органические растворители (дихлорэтан), топливо (пропан, бутан), красители (анилин);

– ядохимикаты, используемые в сельском хозяйстве: пестициды (гексахлоран), инсектициды (карбофос) и др.;

– лекарственные средства;

– бытовые химикаты, используемые в виде пищевых добавок (уксусная кислота), средства санитарии, личной гигиены, косметики и т. д.;

– биологические растительные и животные яды, которые содержатся в растениях и грибах (аконит, цикута), у животных и насекомых (змей, пчел, скорпионов);

– отравляющие вещества (ов) : зарин, иприт, фосген и др.

Яды, наряду с общей, обладают избирательной токсичностью, т. е. они представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности выделяют яды:

– сердечные с преимущественным кардиотоксическим действием; к этой группе относят многие лекарственные препараты, растительные яды, соли металлов (бария, калия, кобальта, кадмия);

– нервные, вызывающие нарушение преимущественно психической активности (угарный газ, фосфорорганические соединения, алкоголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);

– печеночные, среди которых особо следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;

– почечные – соединения тяжелых металлов этиленгликоль, щавелевая кислота;

– кровяные –анилин и его производные, нитриты, мышьяковистый водород;

– легочные – оксиды азота, озон, фосген и др.

Токсическое действие вредных веществ характеризуется показателями токсикометрии, в соответствии с которыми вещества классифицируют на чрезвычайно токсичные, высокотоксичные, умеренно токсичные и малотоксичные. Эффект токсического действия различных веществ зависит от количества, попавшего в организм вещества, его физических свойств, длительности поступления, химизма взаимодействия с биологическими средами (кровью, ферментами). Кроме того, эффект зависит от пола, возраста, индивидуальной чувствительности, путей поступления и выведения, распределения в организме, а также метеорологических условий и других сопутствующих факторов окружающей среды.

В организм промышленные химические вещества могут проникать через органы дыхания, желудочно-кишечный тракт и неповрежденную кожу. Однако основным путем поступления являются легкие. Помимо острых и хронических профессиональных интоксикаций, промышленные яды могут быть причиной понижения устойчивости организма и повышенной общей заболеваемости.

Бытовые отравления чаще всего возникают при попадании яда в желудочно-кишечный тракт (ядохимикатов, бытовых химикатов, лекарственных веществ). Возможны острые отравления и заболевания при попадании яда непосредственно в кровь, например, при укусах змеями, насекомыми, при инъекциях лекарственных веществ.

Выделяют следующие виды действия химических веществ:

1. Местное - характеризуется преимущественно реакциями со стороны кожи, слизистых. При этом вещество не всасывается в кровь. Местным действием обладают вещества с выраженной химической активностью - кислоты, щелочи.

2. Общетоксическое (резорбтивное) - действие вещества при попадании в кровь и распространении по всему организму.

3. Рефлекторное. Этот тип действия можно отнести к местным. Вещество действует на хеморецепторы органов чувств и оказывает рефлекторное влияние на дыхательный центр (кашель, удушье).

Эффекты совместного действия химических веществ:

1. Если эффект действия нескольких веществ равен сумме действия веществ по отдельности, то говорят о суммации эффектов.

2. Эффект может уменьшаться при совместном действии нескольких веществ - антагонистическое действие.

3. Если нет никаких изменений, то это аддитивное действие.

4. Возможно изменение характера эффекта при совместном действии нескольких вешеств - коалитивное действие.

Общая характеристика действия промышленных ядов на организм (ССС, ЦНС, ЖКТ, система крови, кожа)

Сердечно-сосудистая система.

Повреждение сердечно-сосудистой системы носит неспецифичный характер. Острых поражений не наблюдается, при хроническом отравлении чаще имеют место

Вегето-сосудистые дистонии

Дистрофические изменения со стороны миокарда (миокардиодистрофии)

Органические повреждения миокарда, протекающие по типу инфекционного миокардита

Центральная нервная система.

Поражение ЦНС при отравлениях промышленными ядами может быть как острым, так и хроническим.

1. Возбуждение ЦНС - клинически проявляется психомоторными реакциями, которые могут переходить в острые психозы.

2. Угнетение ЦНС - при этом возникает симптом оглушенности, кома (поверхностная или глубокая).

Хроническое отравление ЦНС вначале проявляется неспецифическими симптомами, например, астеновегетативным синдромом. Последний представляет собой симптомокомплекс, характеризующийся появлением головных болей, слабостью, утомляемостью, снижением аппетита.

На более поздних этапах могут появиться токсические энцефалопатии - нарушения в коре головного мозга, характеризующиеся специфическими синдромами (снижением памяти, интеллекта, настроения). Также может наблюдаться мозжечково-вестибулярный синдром (неустойчивость в позе Ромберга, неустойчивая походка и тд.), диэнцефалический (гипоталамический) синдром (нарушение нейроэндокринной системы, вегетососудистые нарушения вплоть до появления несахарного диабета), эпилептиформные синдромы и др.

Желудочно-кишечный тракт.

В основном на ЖКТ оказывают действие вещества, обладающие раздражающим эффектом. Проявления могут наблюдаться уже в ротовой полости. При остром отравлении характерно появление ожогов вплоть до некрозов. При хронических отравлениях возникают гастриты, гастроэнтериты, диспепсические расстройства (тошнота, рвота, поносы, неприятный вкус во рту и тд.), нарушения моторики и др.

Система крови.

Реакции системы крови на действие химических веществ разделяются на общие гематологические неспецифические реакции и специфические реакции.

Общие гематологические неспецифические реакции являются одинаковыми для воздействия любого токсического вещества и характеризуются однотипными сдвигами (лейкоцитоз, эозинофилия и тд.)

Специфические реакции:

1. Нарушение гемопоэза (например, при воздействии циклических углеводородов). Наблюдается угнетение пролиферации, гипопластические состояния, снижение числа форменных элементов крови, гиперпластические состояния (например, лейкозы и тд.).

Нарушение синтеза порфирина и гема. Может вызываться веществами, относящимися к тиоловым ядам - свинцом, аминопроизводными углеводородов.

2. Изменение свойств гемоглобина. Например, при действии метгемогло-бинобразователей, которые приводят к образованию метгемоглобина. Он существует и в норме (0.5 - 2.5 %), обладает защитной функцией, связываясь с эндогенными перекисными соединениями в крови. При увеличении метгемоглобина до 10-15% наблюдается легкая степень отравления, а при концентрации метгемоглобина более 50 % - тяжелая форма. При этом возникает цианоз, гипоксия и тд. Сюда же относят угарный газ, который соединясь с гемоглобином дает карбоксигемоглобин, что также приводит к гипоксии за счет вытеснения кислорода.

1. Гемолитическая анемия - наблюдается при действии веществ, влияющих на мембраны эритроцитов.

Выделяют 3 группы веществ, воздействующих на кожу:

1) Вещества, оказывающие раздражающее действие. Могут быть облигатные раздражители, которые вызывают ожоги, некроз (кислоты, щелочи) и факультативные раздражители (слабые растворы кислот и щелочей).

При раздражающем действии могут возникать:

Контактные дерматиты (органические растворители).Поражения фолликулярного аппарата (деготь, смазочные масла)Пролиферативные изменения

2) Соединения, обладающие фотосенситивным действием, т.е. вещества, вызывающие фотодерматиты (гудрон, асфальт, некоторые лекарственные вещества - нейролептики, сульфаниламиды, антибиотики).

3) Вещества-сенсибилизаторы (различные аллергены). Вызывают аллергические дерматиты, экземы и тд.

Раздражители оказывают острое, а вещества последних двух групп -хроническое действие на кожу.

Дыхательная система.

При остром отравлении может наблюдаться острый токсический, ларингофаринготрахеит, острый токсический бронхит, острый токсический бронхиолит, острый токсический отек легких, острая токсическая пневмония.

При хроническом отравлении будут наблюдаться хронические ток-сико-инфекционные воспаления: хронический токсический бронхит, катаральные изменения, трофические изменения бронхов.

Существуют вещества, избирательно поражающие паренхиму печени. При остром отравлении наблюдается острый гепатит, при хроническом -хронический гепатит, повреждение желчевыводящих путей. Процесс обычно имеет доброкачественное течение, но может осложняться циррозом.

Повреждение почек может протекать по двум механизмам:

1. Непосредственное повреждение клеток почечной ткани, приводящее к дистрофическим изменениям канальцев вплоть до некроза.

2. Расстройства гемодинамики, приводящие к ишемии почек, повреждению канальцевого аппарата почек.

При остром отравлении наблюдается острая почечная недостаточность (ОПН), при хроническом - токсические нефропатии. Поражение почек при хроническом отравлении не является специфическим.

Острые и хронические отравления.

Отравления протекают в острой, подострой и хронической формах. Острые отравления чаще бывают групповыми и происходят в результате аварий, поломок оборудования и грубых нарушений требований безопасности труда; они характеризуются кратковременностью действия токсичных веществ не более, чем в течение одной смены; поступлением в организм вредного вещества в относительно больших количествах – при высоких концентрациях в воздухе; ошибочном приеме внутрь; сильном загрязнении кожных покровов. Например, чрезвычайно быстрое отравление может наступить при воздействии паров бензина, сероводорода высоких концентраций и закончиться гибелью от паралича дыхательного центра, если пострадавшего сразу же не вынести на свежий воздух. Оксиды азота вследствие общетоксического действия в тяжелых случаях могут вызвать развитие комы, судороги, резкое падение артериального давления.

Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие накопления массы вредного вещества в организме (материальной кумуляции) или вызываемых ими нарушений в организме (функциональная кумуляция). Хронические отравления органов дыхания могут быть следствием перенесенной однократной или нескольких повторных острых интоксикаций. К ядам, вызывающим хронические отравления в результате только функциональной кумуляции, относятся хлорированные углеводороды, бензол, бензины и др.

При повторном воздействии одного и того же яда в субтоксической дозе может измениться течение отравления и кроме явления кумуляции развиться сенсибилизация и привыкание.

Сенсибилизация –состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущее. Эффект сенсибилизации связан с образованием в крови и других внутренних средах измененных и ставших чужеродными для организма белковых молекул, индуцирующих формирование антител. Повторное, даже более слабое токсическое воздействие с последующей реакцией яда с антителами вызывает извращенный ответ организма в виде явлений сенсибилизации. Более того, в случае предварительной сенсибилизации возможно развитие аллергических реакций, выраженность которых зависит не столько от дозы воздействующего вещества, сколько от состояния организма. Аллергизация значительно осложняет течение острых и хронических интоксикаций, нередко приводя к ограничению трудоспособности. К веществам, вызывающим сенсибилизацию, относятся бериллий и его соединения, карбонилы никеля, железа, кобальта, соединения ванадия и т. д.

При повторяющемся воздействии вредных веществ на организм можно наблюдать и ослабление эффектов вследствие привыкания. Для развития привыкания к хроническому воздействию яда необходимо, чтобы его концентрация (доза) была достаточной для формирования ответной приспособительной реакции и не чрезмерной, приводящей к быстрому и серьезному повреждению организма. При оценке развития привыкания к токсическому воздействию надо учитывать возможное развитие повышенной устойчивости к одним веществам после воздействия других. Это явление называют толерантностью.

Существуют адаптогены (витамины, женьшень, элеутерококк), способные уменьшить реакцию воздействия вредных веществ и увеличить устойчивость организма ко многим факторам окружающей среды, в том числе химическим. Однако следует иметь в виду, что привыкание является лишь фазой приспособительного процесса, и уловить грань между физиологической нормой и напряжением регуляторных механизмов не всегда удается. Перенапряжение же систем регуляции приводит к срыву адаптации и развитию патологических процессов.

На производстве, как правило, в течение рабочего дня концентрации вредных веществ не бывают постоянными. Они либо нарастают к концу смены, снижаясь за обеденный перерыв, либо резко колеблются, оказывая на человека интермиттирующее (непостоянное) действие, которое во многих случаях оказывается более вредным, чем непрерывное, так как частые и резкие колебания раздражителя ведут к срыву формирования адаптации. Неблагоприятное действие интермиттирующего режима отмечено при вдыхании оксида углерода СО.

Биологическое действие вредных веществ осуществляется через рецепторный аппарат клеток и внутриклеточных структур. Во многих случаях рецепторами токсичности являются ферменты (например, ацетилхолинэстераза), аминокислоты (цистеин, гистидин и др.), витамины, некоторые активные функциональные группы (сульфгидрильные, гидроксильные, карбоксильные, амино- и фосфорсодержащие), а также различные медиаторы и гормоны, регулирующие обмен веществ. Первичное специфическое действие вредных веществ на организм обусловлено образованием комплекса «вещество – рецептор». Токсическое действие яда проявляется тогда, когда минимальное число его молекул способно связывать и выводить из строя наиболее жизненно важные клетки-мишени. Например, токсины ботулинуса способны накапливаться в окончаниях периферических двигательных нервов и при содержании восьми молекул на каждую нервную клетку вызывать их паралич. Таким образом, 1 мг ботулинуса может уничтожить 1200 т живого вещества, а 200 г этого токсина способны погубить все население Земли.

Понятие предельно-допустимой концентрации

В основе токсикометрии лежит установление предельно-допустимых концентраций (ПДК) вредных веществ в различных средах. Эти ПДК составляют юридическую основу санитарного контроля.

Предельно-допустимая концентрация химического соединения во внешней среде – такая концентрация, при взаимодействии которой на организм человека периодически или в течение всей жизни - прямо или опосредованно через экологические системы, а также через возможный экономический ущерб – не возникает соматических или психических заболеваний или изменений состояния здоровья, выходящих за пределы приспособительных физиологических реакций, обнаруживаемых современными методами исследования сразу или в отдельные сроки жизни настоящего и последующих поколений.

Основанием для установления ПДК является концепция пороговости вредного действия веществ.

Порог вредного действия (однократного и хронического) – это минимальная концентрация вещества в объекте окружающей среды, при воздействии которой в организме (при конкретных условиях поступления вещества и стандартной статистической группе биологических объектов) возникают изменения, выходящие за пределы физиологических приспособительных реакций, или скрытая (временно компенсированная) патология. Концентрации воздействующего вещества выражаются обычно в следующих единицах: мг/м3 , мг/л, мг/кг, %. Дозы выражаются в единицах массы или объема вредного вещества на единицу массы животных (мг/кг, мм/кг).

Промышленные отравления ртутью. Меры профилактики

Ртуть является жидким металлом, испаряется при температуре 0°С. Пары значительно тяжелее воздуха. Ртуть в промышленности применяется при изготовлении приборов, ламп дневного света, ртутных выпрямителей, барометров, термометров и тд. Также ртуть используется в химической, фармацевтической промышленности.

В организм пары ртути попадают ингаляционным путем, а также через кожу. В виде солей ртуть попадает в организм через ЖКТ. Выделяется слюнными, потовыми, молочными железами. Ртуть образует в организме депо в костном мозге, печени, почках.

Острое отравление может возникнуть при концентрации паров ртути в воздухе более 0.015 мг/л и проявляется в первую очередь симптомами со стороны ЖКТ. Характерна тошнота, рвота, металлический вкус во рту, гиперсаливация, стоматит, явления колита. Также характерно поражение почек, печени.

При хроническом отравлении сначала появляются неспецифические симптомы: общее недомогание, головные боли, головокружение, сонливость, ослабление памяти, быстрая утомляемость, астеновегетатив-ный синдром, нарушение работы эндокринных желез, нарушение менструального цикла у женщин.

Хроническое отравление характеризуется преимущественным поражением ЦНС. На начальных этапах поражение нервной системы проявляется в виде тремора, который начинается с дрожания пальцев, а затем переходит на ноги, губы язык и все тело, усиливается при волнении, движении, попытке писать. В более тяжелых случаях наблюдаются изменения со стороны психики: больной раздражителен, вспыльчив, он то возбужден, то пуглив, то болезненно застенчив {ртутный эретизм). При хроническом отравлении также характерны нарушения со стороны ЖКТ: ртутные стоматиты, гингивиты, образование ртутной каймы на деснах, отличающейся от свинцовой синеватым цветом, симптомы гастрита, колита.

Профилактика.

1. Технологические мероприятия. Необходимо стремиться к замене ртути в производственном процессе на менее токсичные вещества.

2. Санитарно-технические мероприятия играют ведущую роль. Все работы со ртутью должны быть сосредоточены в специально оборудованном отдельном помещении. Стены и потолки должны быть выкрашены масляной или нитроэмалевой краской, полы должны быть покрыты линолеумом, не иметь щелей. Работы, связанные с наличием открытой ртути, с ее подогреванием должны проводиться в вытяжных шкафах. Температура помещения не должна превышать 16-18°С. Аппаратура для ртути должна быть закрытой. Необходима эффективная общая приточно-вытяжная вентиляция, постоянный контроль за со­держанием ртути в помещении.

3. Гигиеническое нормирование - ПДК для ртути составляет 0.01 мг/м.

4. Лечебно-профилактические меры. Необходимо проведение предварительных и периодических медицинских осмотров с клиническим анализом крови, исследованием мочи на содержание ртути. Противопоказаниями к работе со ртутью является неврастения, органические заболевания ЦНС, психические заболевания, заболевания печени и почек, полости рта (стоматит, гингивит, парадонтоз) и др

Промышленные отравления окислами азота. Меры профилактики

Оксиды азота могут вызывать промышленные отравления на химическом производстве, при проведении взрывных работ.

К окислам азота относятся оксид азота (NO) - бесцветный газ, а также диоксид азота (N02), образующийся из оксида азота на воздухе в результате присоединения кислорода и представляющий собой в обычных условиях летучую жидкость.

Механизм токсического действия оксида и диоксида азота различен.

Оксид азота (N0) относится к метгемоглобинобразователям. Он попадает в организм ингаляционно и, присоединяясь к гемоглобину крови, образует метгемоглобин. В результате этого гемоглобин утрачивает способность связывать и переносить кислород, развивается гипоксия (и даже аноксия). Характерны мозговые, сердечно-сосудистые расстройства.

Диоксид азота (N02) в дыхательных путях легко растворяется в воде с образованием азотной кислоты, которая вызывает химический ожог (действует прижигающе). Для диоксида азота характерно поражение органов дыхания с развитием токсического отека легкого. Кроме азотной кислоты из диоксида азота в дыхательных путях образуется азотистая кислота, которая реагирует со щелочными компонентами тканей, образуя нитриты и нитраты. Нитриты всасываются в кровь, вызывая угнетение ЦНС, снижение артериального давления, метгемоглобинобразование, гемолиз, билирубинемию и др. Нитраты в кишечнике могут трансформироваться в нитрозамины. которые являются канцерогенными веществами.

Первые симптомы отравления развиваются примерно через 6 часов после начала работы и проявляются в виде кашля, одышки, удушья, в тяжелых случаях - отека легких, бронхопневмонии.

Хроническое отравление окислами азота развивается при длительном воздействии малых концентраций, проявляется головными болями, общей слабостью, зеленовато-желтым цветом кожи, зеленоватым налетом на слизистой полости рта, повышением свертываемости крови, наличием в крови метгемоглобина.

Профилактика.

1. Санитарно-технические мероприятия - эффективная вентиляция, герметизация, проветривание выработок после взрывных работ (для оксидов азота).

2. Обеспеченность персонала химических объектов индивидуальными средствами защиты органов дыхания и инструктирование: их по правилам техники безопасности и поведения в случае аварии.

3. Лечебно-профилактические мероприятия - к работе с окислами азота и хлором не допускаются лица с хроническими заболеваниями органов дыхания.

4. Гигиеническое нормирование - ПДК для хлора в производственных помещениях составляет 1 мг/м, для окислов азота - 5 мг/м.

Промышленные отравления бериллием. Меры профилактики

Бериллий отличается высокой прочностью, жаростойкостью, легкостью, в связи с чем используется в авиастроении, космической, ядерной технике. Соединения бериллия широко используются в радиоэлектронике, в силикатной промышленности, люминесцентных лампах, рентгеновских трубках.

В организм бериллий поступает

1. Ингаляционным путем в виде аэрозолей

2. Через ЖКТ

3. Через кожу

Выделяется бериллий через ЖКТ, почками и молочными железами, может накапливаться в костях и внутренних органах. Бериллий может оказывать

1. Выраженное раздражающее действие

2. Общетоксическое действие

3. Выраженное аллергенное действие

4. Канцерогенный эффект

Токсичность соединений Be зависит от их растворимости. При этом растворимые соединения вызывают как острые, так и хронические отравления, а нерастворимые - только хронические. Токсическая концентрация бериллия в воздухе составляет 40 мг/мЗ, т.е. Be очень токсичен.

В патогенезе отравлений бериллием значительную роль играют аутоиммунные процессы, т.к. под действием бериллия изменяются собственные белки организма.

Клиническая картина отравлений бериллием:

1) При ингаляционном поступлении.

1. Острое отравление. Наблюдается местное раздражающее действие, поражение дыхательных путей - острый токсический ларингофарин-готрахеит и характерные поражения бронхиол и легких.

2. Хроническое отравление. Его особенностью является вариабельный латентный период. Последствия хронического отравления могут наблюдаться через много лет после контакта с металлом. Хроническое отравление бериллием (бериллиоз) протекает в двух формах:

а) Интерстициальная форма - наблюдается разрастание соединительной ткани (пневмокониоз) в легких, что клинически выражается в виде одышки, кашля, аллергических проявлений, повышения температуры,цианоза.

б) Гранулематозная форма - в органах и тканях и особенно в корнях легких образуются специфические гранулемы размерами до 0.5 см

2) При поступлении через кожу.

1. Острое поражение проявляется в виде ожогов, некроза

2. Хроническое - в виде дерматитов, язв типа птичьих глазков. Бериллий также обладает канцерогенным действием.

Профилактика отравлений бериллием, как и отравлений другими промышленными ядами, включает технологические мероприятия, сани-тарно-технические меры (вентиляция, тщательная уборка помещений и тд.), установление и соблюдение ПДК бериллия в воздухе рабочих помещений (0.001 мг/м), лечебно-профилактические мероприятия (проведение предварительных и периодических медицинских осмотров).

Промышленные отравления свинцом. Меры профилактики

Свинец используется в аккумуляторном и полиграфическом производстве, при добыче руд, в производстве свинцовых изделий и красок и др. Помимо собственно свинца опасны и его соединения (оксиды свинца).

Свинец поступает в организм преимущественно через дыхательные пути в виде свинцовых паров. Также возможен пероральный путь при заглатывании свинцовой пыли. Выделяется свинец и его соединения через ЖКТ и почками, а также молочными и слюнными железами.

Свинец является кумулятивным ядом, он накапливается в костях и внутренних органах в виде нерастворимого грифосфата свинца. По своему токсическому действию свинец относится к политропным ядам, поражает центральную и периферическую нервную систему, сердечнососудистую систему, систему крови, внутренние органы (ЖКТ, печень и ДР-)

В производственных условиях встречаются только хронические отравления свинцом.

Одним из ранних проявлений свинцового отравления является свинцовая кайма на деснах - серовато-лиловая полоска, появляющаяся на деснах в результате образования сернистого водорода при соединении свинца с сероводородом.

Со стороны системы крови наблюдается анемия, которая может сопровождаться гемолитической желтухой. В эритроцитах обнаруживается базофильная зернистость.

Поражение ЖКТ проявляется снижением аппетита, упорными запорами, появлением мучительных схваткообразных болей (кишечные колики) вследствие спазма гладкой мускулатуры кишечника.

В ряде случаев поражается нервная система, что проявляется в виде парезов, реже параличей. В тяжелых случаях могут возникать явления энцефалопатии. Поражение печени проявляется токсическим гепатитом, гемолитической желтухой.

Диагностическое значение имеет повышение содержания свинца в моче (выше 0.1 мг/л), крови, наличие эритроцитов с базофильной зернистостью, выделение с мочой и калом гематопорфирина.

Профилактика отравления свинцом включает в себя:

1. Технологические меры - по возможности исключение свинца из производственного процесса и замена его другими веществами, обеспечение автоматизации производственного процесса и тд.

2. Санитарно-технические меры - оборудование производственных помещений эффективной приточно-вытяжной вентиляцией, тщательная уборка помещений и тд.

3. Гигиеническое нормирование - установление и соблюдение ПДК. Содержание свинца и его соединений в воздухе производственных помещений не должно превышать 0.01 мг/м.

4. Рабочие снабжаются спецодеждой, которую нельзя уносить домой и которая систематически стирается. После работы обязателен прием душа.

5. Лечебно-профилактические мероприятия - проведение предварительных и периодических медицинских осмотров, в которых обязательно участие терапевта и невропатолога, лабораторные исследования крови и мочи. На производствах, где применятся свинец, запрещен труд женщин и подростков.

Промышленные отравления окисью углерода. Меры профилактики

Окись углерода является наиболее распространенным промышленным ядом и встречается везде, где имеются процессы неполного сгорания углерода. Опасность отравления рабочих СО существует в доменных, мартеновских, кузнечных, литейных, термических цехах, при работе на автотранспорте (выхлопные газы содержат значительные количества СО), на химических предприятиях, где оксид углерода является сырьем (синтез фосгена, аммиака, метилового спирта и др.)

Оксид углерода поступает в организм ингаляционным путем, быстро проникает через альвеолярно-капиллярную мембрану в кровь, связывается с Fe+ гемоглобина, образуя стойкое соединение - карбоксигемоглобин, который не способен выполнять нормальные функции, в результате чего развивается гипоксемия. Сродство СО к гемоглобину в 300 раз выше, чем у кислорода. Кроме того, СО взаимодействует с миоглобином, закисной формой цитохромоксидазы и другими медь- и железосодержащими ферментами, в связи с чем нарушается снабжение мышц кислородом.

Отравление оксидом углерода может протекать в острой и хронической форме. При остром отравлении и очень высокой концентрации СО отмечается потеря сознания, судороги и смерть (молниеносная форма). В более легких случаях (замедленная форма) выделяют три степени тяжести клинической картины:

I. Легкая степень. Сильная головная боль, головокружение, шум в ушах, слабость, сердцебиение, одышка, тошнота, рвота. Наблюдается повышение давления, расширение зрачков, потеря ориентации во времени и пространстве, эйфория. Содержание НЬСО в крови 10-30 %.

II. Средняя степень. Симптомы резко усиливаются, сознание затемнено, характерна выраженная сонливость, слабость, апатия. Кожные покровы и слизистые приобретают багровый оттенок, одышка усиливается, АД падает, развивается эйфория. Содержание НЬСО в крови 30-50 %.

III. Тяжелая степень. Характерны потеря сознания, утрата рефлексов, непроизвольное мочеиспускание и дефекация, судороги клонического и тонического характера, дыхание Чейн-Стокса. Содержание НЬСО в крови 50-70 %.

При хроническом отравлении СО страдает преимущественно ЦНС, что проявляется головной болью, головокружениями, раздражительностью, бессонницей и тд. Также могут возникать тошнота, снижение аппетита, сердцебиения и др.

Профилактика отравления оксидом углерода включает в себя:

1. Технологические меры - обеспечение автоматизации и герметизации производственных процессов, не допускающих попадания СО в рабочую зону.

2. Санитарно-технические меры - прежде всего оборудование производственных помещений эффективной приточно-вытяжной вентиляцией, установление систем контроля за содержанием газа в воздухе производственных помещений и тд.

3. Гигиеническое нормирование - установление и соблюдение ПДК СО в воздухе производственных помещений (20 мг/м).4. Лечебно-профилактические мероприятия - проведение предварительных и периодических медицинских осмотров.

Промышленные отравлния органическими растворителями.Меры профилактики

Органические растворители находят широкое применение. Наиболее часто в промышленности употребляют соединения бензольного ряда (толуол, ксилол, сольвентнафт) и хлороформа (дихлорэтан, четыреххлористый углерод, хлористый метил), спирты (метиловый, пропиловый, этиловый и др.) и растворители типа эфира (бутил, этил, метилацетаты, кетоны и альдегиды).

Отдельные виды соединений, встречающихся в природе и на производстве (дихлорэтан, четыреххлористый углерод, хлористый метилен), обладают аллергенным действием.

Поступление и распространение в организме. Органические растворители проникают в организм через органы дыхания (в виде паров) и кожные покровы.

Вещества этой группы оказывают на организм наркотическое и раздражающее действие, вызывают поражение нервной и кроветворной систем и паренхиматозных органов.

Клиническая картина

Клиника острых отравлений напоминает алкогольное опьянение. В легких случаях возможны эйфория, головная боль, неуверенная походка, рвота, в более тяжелых - рвота, потеря сознания, коматозное состояние. В последующем наблюдаются астеновегетативные расстройства, поражение печени. Для хронических интоксикаций органическими соединениями характерны изменения нервной системы, протекающие по типу астенического синдрома, которые наблюдаются в основном на ранних стадиях поражения. При более тяжелых отравлениях возможно развитие астеновегетативного синдрома. При проникновении через кожу нередко возникает вегетативный полиневрит с нарушением чувствительности. Астеновегетативные синдромы и диэнцефальные кризы как выраженные формы интоксикаций в настоящее время встречаются редко. Изменения системы крови возникают в основном при действии группы бензола и его гомологов - ксилола, толуола, хлорбензола. Могут наблюдаться гипопластические проявления.

Наряду с этим отмечена возможность развития анемических состояний, что особенно часто наблюдается у женщин, работающих в контакте с органическими растворителями. Геморрагические проявления (кровоточивость десен, носовые, маточные кровотечения, обильные менструации) связаны с наличием тромбоцитопении, хотя они могут наблюдаться и при неизмененном количестве тромбоцитов.

Причины их возникновения связаны с нарушением процесса свертывания крови, повышением проницаемости сосудистой стенки.

Поражения печени также характерны для токсического действия растворителей. Наиболее тяжелыми проявлениями являются некроз гепатоцитов, жировая дистрофия печеночных клеток.

При этом отмечаются болевой синдром в области печени, увеличение ее размеров, уплотнение, болезненность при прощупывании. Возможно появление умеренной желтушности склер.

При оценке функционального состояния печени выявляются нарушения как экскреторной (в начальных стадиях), так и поглотительной (в более выраженных стадиях) функций. Уровень билирубина в крови увеличен, нарастает активность фруктозо-1-фосфатальдолазы и других ферментов в сыворотке крови, увеличивается содержание иммуноглобулинов. По данным Т.Б. Поповой, течение гепатита от хронического воздействия растворителей имеет доброкачественный характер. После прекращения контакта с растворителями гепатит обычно не прогрессирует. Нередко отмечается нормализация функционального состояния печени.

Определенное место среди проявлений интоксикации занимают изменения сердечно-сосудистой системы, которые проявляются неустойчивым артериальным давлением с наклонностью к гипотонии, болевым синдромом, диффузными изменениями миокарда.

Промышленные отравлния Сернистом газом.

Острые отравления возможны в производстве серной кислоты, в металлургической промышленности, пищевой, нефтеперерабатывающей и др.

Симптомы: насморк, кашель, охриплость, першение в горле. При вдыхании сернистого газа более высокой концентрации - удушье, расстройство речи, затруднение глотания, рвота, возможен острый отек легких.

Профилактика профессиональных отравлений и заболеваний

Мероприятия по предупреждению профессиональных отравлений и заболеваний должны быть направлены прежде всего на максимальное устранение вредных веществ из производства путем замены их нетоксическими или, по крайней мере, менее токсическими продуктами. Необходимо также устранять или максимально сокращать токсические примеси в химических продуктах, для чего в утверждаемых стандартах на эти продукты целесообразно указывать пределы возможных примесей, то есть проводить их гигиеническую стандартизацию.

При наличии нескольких видов сырьевых материалов или технологических процессов для получения одной и той же продукции необходимо отдавать предпочтение тем материалам, в которых содержится меньше токсических веществ или имеющиеся вещества обладают наименьшей токсичностью, а также тем процессам, при которых не выделяются токсические вещества или последние обладают наименьшей токсичностью.

Особое внимание должно быть уделено использованию а производстве новых химических веществ, токсические свойства которых еще не изучены. Среди таких веществ могут оказаться и высокотоксичные, поэтому при непринятии соответствующих мер предосторожности не исключена возможность профессиональных отравлений. Во избежание этого все вновь разрабатываемые технологические процессы и вновь получаемые химические вещества следует одновременно изучать с гигиенических позиций: оценивать опасность выделения вредностей и токсичность новых веществ. Все нововведения и предусматриваемые профилактические мероприятия в обязательном порядке необходимо согласовывать с местными органами санитарного надзора.

Технологические процессы с использованием или возможностью образования токсических веществ должны быть по возможности непрерывными, чтобы устранить или сократить до минимума выделение вредностей на промежуточных этапах технологического процесса. С этой же целью необходимо использовать максимально герметичное технологическое оборудование и коммуникации, в которых могут находиться токсические вещества. Особое внимание следует обращать на поддержание герметичности во фланцевых соединениях (применять стойкие к данному веществу прокладки), в закрывающихся люках и других рабочих проемах, сальниковых уплотнениях, пробоотборниках. Если будут обнаружены утечка или выбивание паров и газов из аппаратуры, необходимо принять срочные меры для устранения имеющихся неплотностей в оборудовании или коммуникациях. Для загрузки сырьевых материалов, а также выгрузки готовой продукции или побочных продуктов, содержащих токсические вещества, следует использовать герметичные питатели или закрытые трубопроводы, чтобы эти операции производились без вскрытия аппаратуры или коммуникаций.

Вытесняемый во время загрузки емкостей с токсическими веществами воздух должен отводиться специальными трубопроводами (воздушками) за пределы цеха (как правило, в верхнюю зону), а в некоторых случаях при вытеснении особо токсических веществ подвергаться предварительной очистке от вредных веществ или их нейтрализации, утилизации и так далее.

Технологический режим работы оборудования с содержанием в нем токсических веществ целесообразно - поддерживать таким, чтобы он не способствовал усилению выделений вредностей. Наибольший эффект в этом отношении дает поддержание некоторого разряжения в аппаратах- и коммуникациях, при котором даже в случае нарушения герметичности воздух из цеха будет всасываться в эти аппараты и коммуникации и препятствовать выделению из них токсических веществ. Особенно важно поддержание разряжения в оборудовании и аппаратах, имеющих постоянно открытые или негерметично закрываемые рабочие проемы (печи, сушила и т. п.). Вместе с тем практика показывает, что в тex случаях, когда по условиям технологии требуется поддержание внутри аппаратов и в коммуникациях особо высокого давления, выбивания из таких аппаратов и коммуникаций либо не наблюдается совершенно, либо оно весьма ничтожно. Это объясняется тем, что при значительных утечках и выбивании высокое давление резко падает и нарушает технологический процесс, то есть без должной герметичности невозможно работать.

Технологические процессы, связанные с возможностью вредных выделений, должны быть максимально механизированы и автоматизированы, с дистанционным управлением. Это позволит устранить опасность непосредственного контакта рабочих с-токсическими веществами (загрязнения кожного покрова, спецодежды) и удалить рабочие места из наиболее опасной зоны расположения основного технологического оборудования.

Существенное гигиеническое значение имеют своевременные планово-предупредительные ремонты и чистка оборудования и коммуникаций.

Чистку технологического оборудования, содержащеготоксическив вещества, следует производить преимущественно без его вскрытия и демонтажа или, по крайней мере, при минимальном по объему и времени вскрытии (продувкой, промывкой, прочисткой через сальниковые уплотнения и т. п.). Ремонт такого оборудования целесообразно осуществлять на специальных, изолированных от общего помещения стендах, оснащенных усиленной вытяжной вентиляцией. Перед демонтажом оборудования как для доставки его на ремонтный стенд, так идля проведения ремонта на месте необходимо освободить его полностью от содержимого, затем хорошо продуть или промыть до полного удаления остатков токсических веществ.

При невозможности полного устранения выделения вредных веществ в воздух необходимо использовать меры санитарной техники и, в частности, вентиляцию. Наиболее целесообразной и дающей больший гигиенический эффект является местная вытяжная вентиляция, удаляющая вредные вещества непосредственно от источника их выделения и не допускающая их распространения по помещению. В целях увеличения эффективности местной вытяжной вентиляции необходимо максимально укрывать источники выделения вредностей и производить вытяжку из-под этих укрытий.

Опыт показывает, что для предупреждения выбивания вредных веществ необходимо, чтобы вытяжка обеспечивала подсос воздуха через открытые проемы или неплотности в этом укрытии не менее 0,2 м/сек; при чрезвычайно и особо опасных и легколетучих веществах для большей гарантии минимальная скорость подсоса увеличивается до 1 м/сек, а иногда и более.

Общеобменная вентиляция применяется в тех случаях, когда имеют место рассеянные источники вредных выделений, которые практически трудно полностью оборудовать местными отсосами, или когда местная вытяжная вентиляция по каким-либо причинам не обеспечивает полного улавливания и удаления выделяющихся вредностей. Ее обычно оборудуют в виде отсосов из зон максимального скопления вредностей с компенсацией удаляемого воздуха притоком наружного воздуха, подаваемого, как правило, в рабочую зону. Этот-вид вентиляции рассчитывается на разбавление выделяющихся в воздух рабочих помещений вредностей до безопасных концентраций.

Для борьбы с токсической пылью, иомимо изложенных общих технологических и санитарно-технических мероприятий, используются также описанные в предыдущем разделе противопылевые мероприятия.

Планировка промышленных зданий, в которых возможны вредные выделения, их архитектурно-строительное оформление и размещение технологического и санитарно-технического оборудования должны обеспечить, прежде всего, преимущественное поступление как естественным, так и искусственным путем свежего воздуха на основные рабочие места, в зоны обслуживания. Для этого целесообразно подобные производства размещать в малопролетных зданиях с открывающимися оконными проемами для естественного поступления в цех наружного воздуха и с расположением зон обслуживания и стационарных рабочих мест в основном у наружных стен. В случаях возможного выделения особо токсических веществ рабочие места размещаются в закрытых пультах или изолированных коридорах управления, а иногда наиболее опасное по газовыделениям оборудование заключается в изолированные кабины. Чтобы исключить опасность комбинированного действия на работающих нескольких токсических веществ, необходимо максимально изолировать друг от друга производственные участки с различными вредностями, а также от участков, где вообще вредных выделений нет. При этом распределение притока и вытяжки вентиляционного воздуха должно предусматривать устойчивый подпор в чистых чли менее загрязненных вредными выделениями помещениях и разряжение в более загазованных.

Для внутренней облицовки полов, стен и других поверхностей рабочих помещений следует подбирать такие строительные материалы и покрытия, которые не сорбировали бы находящиеся в воздухе токсические пары или газы и не были бы проницаемы для жидких токсических веществ. В отношении многих токсических веществ такими свойствами обладают масляные и перхлорвиниловые краски, глазурованная и метлахская плитка, линолеум и пластиковые покрытия, железобетон и др.

Выше изложены лишь общие принципы оздоровления условий труда при работе с вредными веществами; в зависимости от класса опасности последних использование их в каждом конкретном случае может быть различным, а в некоторых из них рекомендуется и ряд дополнительных или специальных Мероприятий.

Так, например, санитарными нормами проектирования промышленных предприятий (СН 245 - 71) при работе с вредными веществами 1 и 2 классов опасности требуется размещать технологическое оборудование, могущее выделять эти вещества, в изолированных кабинах с дистанционным управлением из пультов или операторских зон. При наличии"веществ 4 класса опасности допускается подсос воздуха в смежные помещения и даже частичная рециркуляция его, если концентрация этих веществ:не превышает 30% от ПДК; при наличии же веществ 1 и 2 классов опасности запрещается рециркуляция воздуха даже в нерабочее время и предусматривается блокировка местной вытяжной вентиляции с работой технологического оборудования.

Все вышеперечисленные мероприятия направлены в основном на предупреждение загрязнения воздушной среды рабочих помещений токсическими веществами. Критерием эффективности этих мероприятий является снижение концентраций токсических веществ в воздухе рабочих помещений до их предельно допустимых величин (ПДК) и ниже. Для каждого вещества эти величины различны и зависят от их токсических и физико-химических свойств. В основу их установления кладется принцип, что токсическое вещество на уровне его предельно допустимой концентрации не должно оказывать никакого неблагоприятного воздействия на работающих, выявляемого современными методами диагностики, при неограниченном сроке контакта с ним. При этом обычно предусматривается определенный коэффициент запаса, который увеличивается для более токсичных веществ.

Для контроля за состоянием воздушной среды, организации мер по устранению выявляемых гигиенических недостатков и в случае необходимости оказания первой помощи при отравлениях на крупных химических, металлургических и других предприятиях созданы специальные газоспасательные станции.

Для ряда вредных веществ, особенно 1 и 2 классов опасности, за последние годы разработаны и стали применяться автоматические газоанализаторы, которые можно сблокировать с записывающим прибором, регистрирующим концентрации на протяжении всей смены, суток и т. д., а также с звуковым и световым сигналом, извещающим о превышении ПДК, с включением аварийной вентиляции.

В случаях необходимости проведения каких-либо работ при концентрациях токсических веществ, превышающих их предельно допустимые величины, как-то: ликвидация аварий, проведение ремонта и демонтажа оборудования и т. п., необходимо пользоваться индивидуальными защитными средствами.

Для защиты кожного покрова рук обычно пользуются резиновыми или полиэтиленовыми перчатками. Из тех же материалов делаются нарукавники и фартуки для предупреждения намокания спецодежды токсическими жидкостями. В некоторых случаяхкожный покров кистей рук можно защитить от токсических жидкостей специальными защитными мазями и пастами, которыми руки смазываются перед работой (пасты ХИОТ, Селисского, различные болтушки и др.), а также так называемыми биологическими перчатками. Последние представляют собой тонкий слой пленки, образующейся при высыхании легколетучих нераздражающих специальных составов типа коллодия. Глаза защищаются от брызг и пыли раздражающих и токсических веществ при помощи специальных очков с плотно прилегающей мягкой оправой к лицу.

При попадании сильнодействующих веществ на кожный покров или слизистые оболочки глаз, полости рта их необходимо немедленно смыть водой, а иногда (при попадании едкой щелочи или крепких кислот) и обезвредить путем дополнительной протирки нейтрализующим раствором (например, кислоту - слабой щелочью, а щелочь - слабой кислотой).

При загрязнении кожного покрова трудносмываемыми или красящими веществами нельзя смывать их различными растворителями, применяемыми в промышленности, так как большинство их в. своем составе имеет токсические вещества, поэтому сами они могут раздражать кожный покров или даже проникать через него вызывая общее токсическое действие. Для этой цели следует использовать специальные моющие средства, как например паста Рахманова и др. По окончании смены рабочие должны принимать теплый душ и переодеваться в чистую домашнюю одежду; при наличии особо токсичных и пропитывающих одежду веществ переодевать следует все вплоть до нательного белья.

На тех производствах, где после проведения и четкого соблюдения всех профилактических мероприятий все же остается определенная опасность возможного воздействия токсических веществ, работающим предоставляются льготы и компенсации которые предусмотрены нормами в зависимости от характера производства.

При поступлении на работу, на которой имеется опасность контакта с токсическими веществами, рабочие проходят предварительный медицинский осмотр, а во время работы с веществами хронического действия - периодический медицинский осмотр,

Список литературы:

1. Артамонова В.Г., Мухин Н.А. Профессиональные болезни. − М.: Медицина, 2004. − 480с.

2. Вредные химические вещества. Справочник под ред. В.А.Филова, Л.А.Тиунова. − Санкт-Петербург: Химия, 1994. − 688с.

3. Лукников Е.А. Клиническая токсикология. Учебник для медвузов.− М.: Медицина, 1982. − 368с.

4. Михайлов Л. А., Соломин В. П., Михайлов А. Л. Безопасность жизнедеятельности: Учебник для вузов. − Санкт-Петербург: издательский дом «Питер», 2006. − 304с.

5. Покровский В. А. Гигиена. − М.: Медицина, 1979. − 460с.

6. Румянцев Г.И., Вишневская Е.П., Козлова Т.А. Общая гигиена – М.: Медицина, 1985.

Причиной отравления могут быть разнообразные химические вещества – промышленные яды, ядохимикаты, бытовые химикаты, лекарственные препараты, принятые в токсических дозах, а также недоброкачественные пищевые продукты, ядовитые растения и т. д.

Виды ядов для человека

По данным Центра лечения острых отравлений (Москва, 1997), наиболее частая причина острых отравлений – вещества психофармакологического действия: нейролептики фенотиазинового ряда, транквилизаторы, клофелин, антихолинергические препараты (антигистаминные, атропин, противопаркинсонические средства), трициклические антидепрессанты и смеси различных психотропных препаратов. За последние годы значительно увеличилось количество отравлений наркотическими веществами (причина почти 15% госпитализаций в Центр лечения отравлений в 1996 г.).

В патогенезе интоксикации большую роль играет путь проникновения яда в организм человека; по этому признаку отравления могут быть классифицированы следующим образом:

Инъекционные отравления – наиболее сильное и быстрое действие наблюдается при введении яда человеку в вену, внутримышечно, подкожно.

Пероральные. Через слизистую оболочку рта и желудка всасываются жирорастворимые вещества (алкоголь, бензол, органические кислоты). Водорастворимые вещества, к которым принадлежат многие лекарства, всасываются большей частью слизистой оболочкой тонкой и толстой кишки.

Перкутанные. Неповрежденная кожа впитывает некоторые летучие вещества, хлорированные углеводороды, фосфорорганические соединения и др. Через увлажненную кожу проникают соединения ртути, йода, салициловая кислота и т. д.

Ингаляционные отравления. Органы дыхания являются входными воротами для летучих и газообразных ядов для человека (угарный газ, сероводород, пары бензина, эфира и т. д.).

Слизистая оболочка конъюнктив может служить входными воротами как для водо-, так и для жирорастворимых веществ.

Отравления при введении ядов в различные полости организма – прямую кишку, влагалище, наружный слуховой проход и др.

Скорость всасывания различных ядов человеком неодинакова. Чем скорее всасывается ядовитое вещество, тем быстрее нарастает его концентрация в организме. Большинство лекарств всасывается быстро и в течение 30 – 60 мин в крови создается их максимальная концентрация (например, аминазин, барбитураты). Принятые в больших дозах препараты (особенно таблетированные формы) могут долго задерживаться в желудке и кишечнике. В течение этого времени продолжается их всасывание, на протяжении чего концентрация яда в крови может оставаться высокой на протяжении многих часов.

Действие яда на организм человека при отравлении

Всосавшееся токсичное вещество и продукты его превращения разносятся током крови по организму, распределяясь неравномерно в органах и тканях. Переход ядов из крови в ткани при отравлении зависит главным образом от интенсивности кровообращения в данном органе, т. е. гиперемия способствует быстрому всасыванию, сужение сосудов, напротив, препятствует ему. Кроме того, имеют значение растворимость данного вещества в тканевой жидкости, его сродство к определенным тканям. Это определяет избирательность действия токсичных веществ, т. е. преимущественное воздействие яда на те или иные органы и системы организма. Большая часть ядовитых веществ поражает нервную систему. Классификация ядов по избирательному токсическому действию представлена в табл. 11.

Таблица 11

Избирательная токсичность ядов

Избирательная токсичность

Токсичные вещества

Кардиотоксическое действие – нарушения ритма и проводимости сердца, токсическая дистрофия миокарда

Сердечные гликозиды, циклические антидепрессанты, соли калия, никотин, хинин, пахикарпин

Нейротоксическое действие при отравлении – нарушение психической активности, токсическая кома, токсические гиперкинезы и параличи

Алкоголь и его суррогаты, бензол, производные изониазида, психотропные средства (антидепрессанты, барбитураты, наркотические анальгетики, транквилизаторы), амидопирин, атропин, угарный газ, фосфорорганические соединения

Гепатотоксическое действие – токсическая гепатопатия

Хлорированные углеводороды (дихлорэтан), ядовитые грибы, фенолы и альдегиды

Нефротоксическое действие – токсическая нефропатия

Соли тяжелых металлов, этиленгликоль, щавелевая кислота

Гастроэнтеротоксическое действие – токсический гастроэнтерит

Крепкие кислоты и щелочи, соли тяжелых металлов и мышьяка

Гематотоксическое действие при отравлении – гемолиз, метгемоглобинемия

Анилин и его производные, нитриты, мышьяковистый водород

Пульмонотоксическое действие – токсический отек легких, фиброз легких

Окислы азота, фосген

Виды отравлений и признаки

Различают случайные и преднамеренные отравления.

Случайные виды отравления:

  • производственные,
  • бытовые (самолечение, передозировка лекарственных средств, алкогольная или наркотическая интоксикация и т.д.);

преднамеренные вbsl отравления:

  • криминальные (с целью убийства, для приведения в беспомощное состояние),
  • суицидальные (с целью самоубийства).

Признаки и симптомы отравлений

При попадании в организм яд оказывает местное, рефлекторное и общее действие. Местные симптомы отравления возникают на месте соприкосновения яда с тканями. Например, прижигающие яды – кислоты и щелочи – вызывают ожог на месте попадания в организм. Бензин, керосин, алкоголь раздражают слизистую оболочку желудка. На месте раздражения или ожога возникают гиперемия, расширение сосудов, что способствует ускорению всасывания яда. Поражение слизистой оболочки пищевода, желудка и кишечника может быть причиной тяжелых повреждений этих органов, в результате чего возможно прободение стенки желудка или кишечника или развитие сужения пищевода.

Местные изменения возникают и при попадании кислот, щелочей и т. д. на слизистую оболочку глаз, а также при поступлении летучих веществ (бензин, керосин и пр.) в дыхательные пути.

Рефлекторные симптомы отравления являются следствием раздражения чувствительных нервных окончаний слизистых оболочек: например, раздражение слизистой оболочки желудка приводит к рвоте. Обычно часть принятого яда удаляется из желудка со рвотными массами, что может уменьшить тяжесть отравления (т. е. рвота способна оказывать благоприятное действие). Рефлекторной реакцией является и бронхоспазм, возникающий при вдыхании летучих и газообразных ядов.

Скорость выделения ядов из организма человека различна. Одни вещества при отравлении выводятся очень быстро (например, снотворные короткого действия), другие могут длительно задерживаться в организме (радиоактивные металлы). Заболевания органов выделения или снижение их функции вызывают длительную задержку и накопление в организме значительного количества отравляющих веществ.

В характере признаков отравления большую роль играет состояние реактивности организма. Установлено, что высшие животные более чувствительны к ядам, чем низшие. Особенно внимательно следует изучать признаки отравления у детей. Организм ребенка по-иному реагирует на целый ряд ядов, чем организм взрослого. Известна особенно высокая чувствительность детей раннего возраста к препаратам опия, барбитуратам. Это объясняется анатомо-физиологическими особенностями детского организма, незрелостью ряда систем и органов, в частности центральной нервной системы.

На некоторые яды женский организм реагирует по-иному, чем мужской. Особенности индивидуальной чувствительности организма могут быть причиной возникновения картины отравления при приеме терапевтических доз лекарственных веществ (например, в случае использования атропина в виде глазных капель). Известно также, что у ослабленных лиц и после перенесенного тяжелого заболевания отравление протекает особенно тяжело.

Как происходит процесс отравления?

Большинство веществ, поступающих в организм, подвергаются в нем химическим превращениям, в результате чего образуются либо более токсичные соединения (например, малотоксичный кодеин превращается в токсичный морфин), либо происходит обезвреживание вещества и уменьшение его токсичности (барбитураты, фенотиазины, салицилаты). Механизм токсического действия ядов на организм при отравлении тесно связан с изменением обмена веществ в организме, так как все ядовитые вещества тем или иным образом «вмешиваются» в биохимические процессы, нарушая их. Ряд ядов по химическому строению или химическому поведению напоминает свойственные организму вещества.

Вследствие этого яды способны замещать специфичные для организма вещества в биохимических реакциях; такие реакции называются конкурентными. Так, окись углерода замещает кислород в молекуле гемоглобина, образуя карбоксигемоглобин. Ядовитые вещества при отравлении нарушают тканевый обмен, влияя на ферментные системы (обмен холинэстеразы, моноаминоксидазы, цитохромоксидазы и т.д.).

Например, фосфорорганические соединения (ФОС) разрушают фермент холинэстеразу, вследствие чего происходит избыточное накопление в организме ацетилхолина.

Большинство ядов вызывают в организме кислородную недостаточность – гипоксию, которая является следствием патологических воздействий яда на организм. При тяжелых отравлениях ядом у человека в глубоком коматозном состоянии угнетаются дыхательный и сосудодвигательный центры продолговатого мозга, что приводит к нарушению дыхания. При этом нарушается ритм дыхания – оно урежается, может произойти его остановка. Кровяные яды (окись углерода, анилин, сульфаниламиды) нарушают перенос кислорода гемоглобином, следствием чего является гипоксия. К возникающей кислородной недостаточности наиболее чувствительны клетки центральной нервной системы, в первую очередь кора больших полушарий головного мозга.

Выведение ядов из организма человека в случае отравления

Одновременно с всасыванием и распределением яда в организме человеке при отравлении начинается процесс его выделения. Ядовитые вещества выделяются как в неизмененном виде, так и в виде продуктов их превращения. Выделение ядов происходит через почки, легкие, желудочно-кишечный тракт, молочные, сальные, потовые железы, слизистые оболочки, кожу. Почки при отравлении являются наиболее важным путем выведения ядов. Количество выделенной мочи, как правило, характеризует выделительную функцию почек у отравленных. Летучие вещества выводятся из организма в основном легкими.

Некоторые виды ядов (например, морфин, элениум), выделяясь стенкой желудка или с желчью в двенадцатиперстную кишку, могут вновь всасываться из кишечника, совершая, таким образом, в организме своеобразный круговорот. Выделение ядовитых веществ молочными железами при лактации может в свою очередь быть причиной отравления грудных детей.

Список 10-ти "популярных" ЯДОВ...

Яд - очень популярное средство для убийства в литературе. Книги про Эркюля Пуаро (Hercule Poirot) и Шерлока Холмса развили у читателей любовь к быстродействующим непрослеживаемым ядам. Но яды распространены не только в литературе, бывают и реальные случаи использования ядов. Вот десятка известных ядов, которыми убивали людей на протяжении долгого времени.

1. Мышьяк

Мышьяк называют «Королём ядов» за его незаметность и силу - его следы ранее невозможно было найти, поэтому его часто использовали для убийств и в литературе. Это продолжалось до изобретения пробы Марша, при помощи которой можно находить яд в воде, еде и т.д. «Король яда» унёс много жизней: Наполеон Бонапарт, Георг Третий и Симон Боливар умерли от этого яда. Как и белладонна, мышьяк использовался в средние века в косметических целях. Несколько каплей яда делали кожу женщины белой и бледной.

2. Ботулотоксин (Botulinum Toxin)


Если вы читали книги о Шерлоке Холмсе - вы слышали об этом яде. Ботулотоксин вызывает ботулизм - заболевание, приводящее к летальному исходу, если не лечить его вовремя. От ботулизма развивается паралич мышц, со временем приводящий к параличу дыхательной системы и смерти. Бактерия попадает в организм через открытые раны или заражённую пищу. Ботулотоксин это то же вещество, что используется при ботоксных инъекциях.

3. Цианид

Этот яд использовался в книгах Агаты Кристи. Цианид очень популярен (шпионы используют цианидовые таблетки, чтоб убить себя, в случае попадания в плен) и есть множество причин его популярности. В первую очередь: источником цианида служат огромное количество веществ - миндаль, семечки яблок, косточка абрикоса, табачный дым, инсектициды, пестициды и т.д. Убийство в таком случае может быть объяснено бытовой случайностью, как например случайное употребление пестицида внутрь. Фатальной дозой цианида является 1.5 миллиграмма на килограмм веса тела. Во-вторых - цианид убивает быстро. В зависимости от дозы, смерть наступает за 15 минут. Цианид в форме газа (цианистый водород) использовался нацистской Германией в газовых камерах во время Холокоста.

4. Ртуть


Существует три очень опасных вида ртути. Элементарную ртуть можно найти в стеклянных термометрах. Она безвредна при прикосновении, но приводит к летальному исходу, если её вдохнуть. Неорганическая ртуть используется в изготовлении батареек и смертельна, только если её принять внутрь. Органическая ртуть содержится в таких рыбах, как тунец и рыба-меч (нельзя есть более 170 грамм их мяса в неделю). Если слишком долго употреблять эти виды рыб, вредное вещество может накопиться в организме. Известной смертью от ртути является смерть Амадея Моцарта, которому дали ртутные таблетки для лечения сифилиса.

5. Полоний


Полоний - медленно действующий радиоактивный яд, от которого нет лекарства. Один грамм полония может убить около 1.5 миллионов людей за несколько месяцев. Самый известный случай отравления полонием - убийство бывшего сотрудника КГБ-ФСБ Александра Литвиненко. Остатки полония были найдены в его организме в дозе большей в 200 раз, чем необходимо для смертельного исхода. Он умер за три недели.

6. Тетродотоксин (Tetrodotoxin)


Это вещество содержится в морских существах - Синекольчатом осьминоге (blue-ringed octopus) и иглобрюхих рыбах (фугу). Осьминог более опасен, так как он преднамеренно отравляет жертву данным ядом, от чего наступает смерть в течение нескольких минут. Количества яда, выделяемого за один укус, хватит, чтобы убить 26 взрослых людей за несколько минут, а укусы обычно настолько безболезненны, что жертва понимает, что была укушена только тогда, когда наступает паралич. Иглобрюхие рыбы опасны только, если вы собираетесь их есть. Если блюдо фугу из иглобрюхих приготовлено правильно, то весь его яд полностью испаряется, и его можно употреблять без всяких последствий, кроме выброса адреналина от мысли, что при приготовлении блюда повар ошибся.

7. Диметилртуть (Dimethylmercury)


Это медленный убийца, созданный человеком. Но именно это и делает его намного более опасным. Принятие дозы в 0.1 миллилитр приводит к смерти. Впрочем, симптомы отравления становятся явными лишь после нескольких месяцев, что сильно осложняет лечение. В 1996 году преподаватель химии из Дартмутского колледжа в Нью-Гэмпшире, уронила каплю яда на свою руку - диметилртуть прошёл через перчатку из латекса, симптомы отравления появились через четыре месяца, а через десять месяцев она умерла.

8. Белладонна


Это любимый яд среди девушек! Даже название растения, из которого его получают, происходит от итальянского языка и означает «Красивая женщина». Изначально растение использовалось в средневековье для косметических нужд - из него делались капли для глаз, которые расширяли зрачки, что делало женщин соблазнительнее (по крайней мере, они так считали). Если им потереть немного щёки, это придало бы им красноватый оттенок, что сейчас достигается при помощи румян. Кажется что растение не сильно страшное? На самом деле, если его принять внутрь, то даже один листик может быть летальным, из-за чего оно использовалось для изготовления ядовитых наконечников для стрел. Ягоды Белладонны самые опасные - 10 привлекательных ягодок могут стать фатальными.

9. Аконит (Aconite)


Аконит получают из растения борец. Этот яд оставляет после себя только один посмертный признак - удушье. Яд вызывает сильную аритмию, что в итоге приводит к удушью. Отравиться можно даже просто прикоснувшись без перчаток к листьям растения, так как вещество очень быстро и легко всасывается. Из-за сложности в нахождении остатков этого яда в организме, он стал популярен среди людей, пытающихся совершить неотслеживаемое убийство. Несмотря на это, у аконита есть своя знаменитая жертва. Император Клавдий отравил свою жену Агриппину при помощи аконита в блюде из грибов.

10. Болиголов (Hemlock)


Болиголов, также известный как Омег - высокотоксичный цветок, растущий в Европе и Южной Африке. Он был очень популярен у древних греков, которые убивали при его помощи своих заключённых. Фатальная доза для взрослого человека составляет 100 милиграмм омега (около 8 листков растения). Смерть наступает в результате паралича, сознание остаётся ясным, но тело перестаёт реагировать и вскоре отказывает дыхательная система. Самым известным случаем отравления данным ядом является смерть греческого философа Сократа. В 399 году до нашей эры его приговорили к смертной казни за неуважение к греческим богам - приговор исполнили при помощи концентрированного настоя Болиголова.

НЕМНОГО ИСТОРИИ..

Кантарелла - название яда от итал. cantarella, соединение мышьяка, эффективное отравляющее вещество, провоцирующее летальный исход в течение суток. Изготовлялось из внутренностей свиньи, которые посыпали мышьяком, высушивали и растирали в порошок, на вид трудно отличимый от сахара. По некоторым историческим источникам этот яд использовался домом Борджиа, а именно Лукрецией Борджиа.

По версии Гюго, Лукреция, также как её отец и братья, пользовалась уникальным фамильным ядом «катанея», название которого произошло от фамилии их матери, испанской куртизанки Ваноцци деи Катанеи, которая преподнесла этот яд папе.

Необычные “живые” яды


Как и миллионы лет назад, на нашей планете ежедневно идет причудливый балет жизни и смерти, не останавливая свое движение ни на секунду. Каждый раз миллионы живых существ используют все свои веками выработанные эволюционные приспособления только для того, чтобы дожить до следующего восхода солнца. Каждая смерть не ослабляет вид в целом. Каждый смертельный акт оберегает и предостерегает других представителей вида, и оставляет в живых наиболее сильных и приспособленных…

Но иногда смерть приобретает причудливые формы, когда в дело вступают различные нейротоксины. Нейротоксин – это химическое соединение, которое действует строго на нервную ткань. Если бы в животном мире действовали бы принципы Женевского соглашения, то нейротоксины были бы запрещены. Эти яды удивительно совершенны, но страшна и ужасна та смерть, которая ими вызывается.

Каждый такой яд имеет причудливое научное название, которое мы и укажем вместе с теми эффектами, которые он вызывает.

Яд Сиднейского паука: «Взрывающиеся легкие»

Многие типы нейротоксинов «выключают» нервную систему, но атракотоксин работает с точностью да наоборот. Он стимулирует нервную систему так, что она начинает работать на пределе своих возможностей. В конечном итоге наиболее ужасающим последствием его попадания в организм является то, что неимоверно повышается давление крови в малом круге кровообращения, в результате чего альвеолы легких просто взрываются, и человек тонет, находясь на твердой земле.


И самое страшное. Яд этот совершенно безопасен почти для всех живых существ, и даже для млекопитающих. Зато он отлично действует на приматов. Из всех живых существ, от которых следовало бы защищаться этому проклятому пауку, он выбрал именно человека. Нас. Также обезьян, но главным образом нас.

Этот определенный нейротоксин найден в Сиднейском пауке, который был замечен только в Сиднее, Австралия. И это самый опасный паук на всем земном шаре, так как его яд запросто может вас прикончить всего за 15 минут. К величайшей радости, примерно 30 лет назад был разработан антитоксин, и вот уже три десятка лет нет ни единого зарегистрированного случая со смертельным исходом. Впрочем, это повод не рваться посетить австралийский Сидней, так как там есть немалый шанс повстречать этого милого паука.

Яд скорпионов: смертельные конвульсии

Дортоксин найден в южноафриканском плюющем скорпионе, и является, вероятно, одним из самых неприятных ядов, от которых вы могли бы умереть. Впрочем, не расслабляйтесь, впереди еще много открытий, и способ умереть выбирать еще рано.

Итак. Когда исследователи проверили токсин на мышах, он привел к конвульсиям, судорогам, и гиперактивности, которая не заканчивалась и на протяжении 30 секунд с момента смерти мыши. Самое ужасное в том, что понадобилось каких-то 20 нанограмм (!) для убийства крупного животного.


Яд плюющего скорпиона специфичен тем, что он фактически представлен тремя различными токсинами. Причем скорпион, в зависимости от жертвы, может выбирать тип яда. Плюющим скорпион назван потому, что до непосредственно момента укуса он «выплевывает» некоторое количество яда в сторону цели.

Ученые полагают, что таким способом скорпион сохраняет наиболее сильный токсин, который требует много энергии на его синтез. Эта же небольшая порция не столь убойного токсина крупного хищника может просто отпугнуть, а непосредственно мелких зверьков (добычу скорпиона) убить на месте, позволяя скорпиону приберечь наиболее мощное оружие про запас.

Психоделические яды жаб

Вы когда-нибудь видели фильмы, где люди, лизнув жабу, начинали себя неадекватно вести? Кстати говоря, это вполне реально, и так действует буфотоксин, состоящий из коктейля химикатов, найденных на телах определенных жаб. Среди других алкалоидов яд жабы Bufo содержит 5-MeO-DMT, воздействующее на психику вещество, подобное псилоцибину и мескалину, которые вместе известны как «завтрак Бога».

Таким образом, некоторые из эффектов, о которых сообщают те, кто попробовал мескалин и подобные ему продукты, как раз и обусловлены состоянием измененного сознания, которое возникает под действием этого токсина.


Яд этот выделяется через железы на задних частях тела жаб Bufo и является просто-напросто защитным механизмом. Можно долго смеяться, но такой токсин куда более эффективен, чем многие виды смертельных ядов. В отличие от нейротоксинов, которые убивают жертву, у него есть свойство накрепко врезаться в память хищника, намекая, что таких жаб кушать не следует.

Представьте, что вы являетесь хищником, который решил отужинать такой жабой. Представьте себе несчастного хищника, которого после нападения на жабу выбросило часа на три из нашего мироздания! Как себя будет чувствовать животное после этого? Впрочем, если животное было невелико, а порция токсина, которая испуганная жаба выделила, была велика, хищник вполне может и погибнуть.

Яды гусениц геморрагического действия

Исследования Лономии (Lonomia obliqua) ведутся до сих пор. Несмотря на то, что первый случай отравления этой гусеницей был зафиксирован два десятка лет назад, с тех пор только официально по ее вине этот мир покинуло уже порядка 500 человек. Если вам кажется, что это немного, просто знайте о том, что вышеупомянутый Сиднейский паук за прошедшие 100 лет отправил в могилу только 13 человек.


Исследователи до сих пор точно не знают состава этого дьявольского коктейля, но прекрасно изучили последствия попадания яда в организм человека. Одна женщина, которая была ужалена гусеницей, умерла от внутричерепного кровотечения. Фактически, ее череп был заполнен кровью. Есть немало схожих случаев, из-за чего среди ученых начало формироваться определенное мнение о природе этого яда.

Сейчас большая часть научного мира предполагает, что яд действует на протромбины, не позволяя крови сворачиваться. Фактически, в этом случае следует говорить не о нейротоксине, а о гемотоксине. В результате кровь теряет способность к свертыванию, становится жиже, и человек может умереть от малейшей случайности.

Другими словами, в результате невероятной по силе гиперемии ваши внутренние органы могут просто лопнуть.

Асфиксия: привет от бразильского Блуждающего Паука

Если честно, то у нас уже сложилось совершенно особенное мнение о пауках. Пауки – одни из самых хладнокровных убийц в животном мире, и если бы они создали общество, основанное на способности убить, то бразильский блуждающий паук был бы их королем. Один из главных компонентов яда бразильского блуждающего паука - нейротоксин по имени PhTx3.


Можно порадовать мужчин. Этот токсин может вызывать эрекцию. Очень сильную. Сильную настолько, что это будет последняя эрекция в вашей жизни, после чего вы останетесь импотентом. Смейтесь, но тем, кто испытал действие яда на себе, смеяться уже не хочется.

Этот эффект называется преапизм, и вызван определенным элементом в нейротоксине который называется Tx2-6. С эволюционной точки зрения этот паук – просто изощренный садист. Он не убивает напавшего на него, но делает его неспособным к продолжению рода.

В дополнение к невероятной по силе эрекции PhTx3 обладает и куда более опасным эффектом. Он может блокировать кальциевые каналы в мышечных синапсах, из-за чего мускулы не могут сокращаться. Как только эффект распространяется на диафрагму, вам конец. Проще говоря, вы просто задохнетесь.

Мышечный паралич

Когда вы думаете о животных, которые могут вызвать ужасную смерть, улитки обычно не являются лидерами вашего топ-10. А зря.

Улитка-конус является убийцей. Сложная группа нейротоксинов, используемых ей, чтобы убить добычу, известна как конотоксин, и является одним из самых сильных токсинов в мире. Причина того, что конусы производят такой мощный токсин в том, что им нужно убить свою жертву как можно быстрее. Ведь они – хищники, но хищники медлительные. Конусы выстреливают в жертву своеобразный гарпун, что чаще всего и делает жертвами людей, которые любят собирать раковины.


Опасность заключается в том, что разновидностей конуса много, и каждый вид улиток токсичен в разной степени. Некоторые жалят не опаснее пчелы, тогда как маленькие и безобидные на вид разновидности конуса легко могут убить взрослого человека. Токсины конусов уникальны не только своей силой, но и невероятным разнообразием. Только представьте себе следующее: всего известно около 100 разновидностей этих милых улиток.

Каждый подвид может иметь до 500 различных разновидностей яда, что в результате дает 50 тысяч вариантов смертельного токсина! К такому количеству просто невозможно разработать противоядие. Сложность и в том, что каждый такой токсин действует по-разному. К примеру, одна из его разновидностей обладает болеутоляющим эффектом. Только начав умирать, вы поймете, как все серьезно, вот только вам это уже никак не поможет.

Сердечные приступы от лягушек

Есть хороший шанс, что вы знакомы с удивительными лягушками, слизью которых индейцы Амазонии смазывают наконечники своих стрел. Некоторые из них ядовиты настолько, что при наличии малейшей царапины на открытом участке кожи, с которыми контактировала лягушка, вы можете умереть. Но самое удивительное даже не в этом. Удивительнее то, как лягушкам удаётся синтезировать тот батрахотоксин, который и является настолько опасным ядом.


В большинстве случаев железы, которые отвечают за выработку токсина, есть у каждого ядовитого существа на планете. Они работают как самодостаточная фабрика, синтезируя токсин в результате сложных химических процессов. У этих же лягушек наличие токсина зависит от того, что они едят. Организм этих лягушек устроен так, что они запасают этот токсин, который поступает к ним с пищей так, как наш организм запасает жир или углеводы. И в этом заключается уникальность этих удивительных существ. Они могут быть смертельно опасны, а могут быть и совершенно беззащитны.

Профессиональные ученые, занимающиеся изучением амфибий, прекрасно знают о том, что эти лягушки, будучи выращенными в неволе, совершенно безобидны. Даже те лягушки, которые были пойманы в дикой природе, после некоторого периода содержания их в неволе на простой диете, полностью теряют свои токсические свойства. Но если такую лягушку выпустить в дикую среду, через некоторое время она снова станет ядовитой.

И это хорошая новость для тех любителей террариумов, которые любят содержать этих существ в неволе. Дикая же лягушка может содержать до 13 тысяч микрограммов токсина, тогда как для убийства одного человека достаточно только 130 микрограмм.

Смертельные медузы

Медуза Irukandj является одним из наиболее распространенных смертельно опасных медуз Мирового Океана. На этих медузах лежит ответственность как минимум за 70 подтвержденных смертельных случаев. Они живут близ побережья Австралии, и являются настолько маленькими, что многие люди, даже будучи ей ужаленными, так ничего и не замечали. Люди, которые счастливо отделались, узнают о том, что их укусило, только от медицинского работника.


Жало этой медузы (кстати, оно не больше ногтя мизинца ребенка) содержит настолько сильный яд, что он может убить взрослого здорового мужчину. Сила ее яда так велика точно по той же, что и улиток-конусов, причине. Они слишком медлительны, чтобы преследовать раненую добычу, а потому нуждаются в максимально эффективном средстве ее убийства. Впрочем, именно по этой причине и морские змеи в сотни раз ядовитее, чем любой из их земных сородичей.

Вот только тут есть один маленький неприятный нюанс. Креветка или маленькая рыбка действительно умрут мгновенно, тогда как человеку перед смертью придется испытать целый букет мучительных ощущений. Википедия на этот счет заявляет: “мучительные мышечные спазмы, серьезная боль в спине и почках, горящее ощущение рук и лица, головные боли, тошнота, неугомонность, потение, рвота, увеличение частоты сердцебиений и кровяного давления, а также чувство нависшей гибели”.

Чувство нависшей гибели… согласитесь, это просто ужасно. Не только страдать, но и знать при этом, что обязательно умрешь…

Ядовитая птица

Если долго не распинаться на тему того, с чего вдруг птица стала ядовитой, то можно сразу сказать о том, что яд она получает оттуда же, откуда его получают вышеописанные лягушки. Итак, почему мы перечисляем это снова? Прежде всего, хомобатрахотоксин - нейротоксин, найденный в двуцветном питоху, которого можно с полным на то основанием назвать «чертовой птицей». Двуцветный питоху - первая обнаруженная ядовитая птица, хотя со времени ее открытия были найдены еще несколько ее разновидностей.

Да, это действительно странно. Помните, как мы сказали, что ядовитые лягушки получают свой токсин из пищи? Хорошо, двухцветный питоху живет в Папуа-Новой Гвинее, примерно в 10000 милях через Тихий океан от Центральной Америки и Южной Америки (основные места обитания ядовитых лягушек). Но несмотря на это, птица смогла развить в себе точно такую же способность к кумуляции этого токсина (невероятно редкого), относящегося к батрахотоксинам.

Но это тем более странно, если учесть, что их диеты совершенно разные! Да и предположить, что разовьется совершенно одинаковая способность к накоплению совершенно уникального вида, да еще и у животных совершенно разных классов и семейств? Тем не менее, это действительно так.

Смертельный деликатес: рыба Фугу

Рыба Фугу широко известна во всем мире. Причем известность она получила вовсе не за свою удивительную способность раздуваться как шар, будучи вытащенной из воды, а за удивительные суши, которые легко могут вас отправить к праотцам. Токсин, который ответственен за такое безобразие, называется тетрадотоксином. Название было взято от латинского названия этой рыбы.


И мы снова возвращаемся к проблеме происхождения этого яда в организме животного. Тот же самый нейротоксин, который в 100 раз сильнее печально известного цианистого калия, найден в синем кольцевидном осьминоге, нескольких разновидностях тритонов, и во многих морских улитках. Поэтому токсин этот фактически произведен бактериями, которые развили симбиотические отношения со всеми этими различными морскими животными. По различным причинам эти животные эволюционировали, чтобы быть в состоянии сосуществовать с этим бактериями во взаимно выгодных отношениях.

tagPlaceholder Тэги:

Яды любых видов, будь то химические, пищевые, или естественные, представляют серьезную опасность для человека. Существуют сотни смертельных ядов, известных ученым; многие из них использовались в совершении убийств, геноцида и террористических актах. Некоторые из них произведены искусственно в целях порождения смерти, другие образовались естественно в растительном и животном мире, или являются продуктом экспериментов в лаборатории, но одна вещь бесспорна: они способны убить человека болезненными, ужасающими способами.

Цианид


Известный токсин, Цианид - смертельный яд, который затрагивает центральную нервную систему, а также сердце. Даже если малая доза цианида попадет в организм, яд парализует кровоток, блокируя поступление кислорода и вызывая смерть в считанные минуты. Хотя есть различные формы Цианида, Водородный является безусловно самым смертельным из них. Считающийся химическим оружием, цианистый водород (синильная кислота) невероятно смертелен и убивает человека менее чем за десять минут. Яд активно использовался во время Первой мировой войны, прежде чем химическое оружие было запрещено в соответствии с Женевской конвенцией. Сегодня, Цианид преобладающе используется в качестве метода убийства, самоубийства, или в беллетристических теориях заговора.

Сибирская язва


Один из самых известных ядов, Сибирская язва упоминается в СМИ практически каждый день, из-за ряда зараженных сибирской язвой писем, отправленных по почте ничего не подозревающим жертвам в Соединенных Штатах. При этом 5 человек погибло, и еще 17 были серьезно заражены, в то время как миллионы были затронуты вспыхнувшей паранойей. Волна паники возникла на достаточно серьезном основании. По существу, болезнь вызывается бактериями - Сибирскую язву нужно вдохнуть, чтобы заразить кого-то. Смертельный яд распространяется спорами, выпущенными в воздух. После заражения человек чувствует незначительный холод, который быстро развивается в серьезное нарушение дыхания, а затем его полную блокировку. Смертность от Сибирской язвы составляет почти 90% в течение недели после инфекции.


Зарин


Считающийся оружием массового поражения, Зарин - газ нервно-паралитического действия, убивающий мучительным способом. Вызывая полное удушье, Зарин делает свою работу с человеческим тело всего за 60 секунд, но для отравленного ядом они кажутся бесконечно длинными. Одна минута, единственная, мучительная минута, чтобы умереть... Хотя производство Зарина находится вне закона с 1993, с тех пор было много случаев, когда яд использовался в террористических атаках, или химической войне. Особенно выделяется химическая атака в Метро Токио в 1995 и мятежи в Ираке и Сирии. В Сирии химическое вещество использовалось на гражданских лицах, погубив от 330 до 1,800 человек.


Аматоксин


Аматоксин - тип яда, найденного в самых смертельных грибах в мире. Яд очень изменчив - если аматоксин попадает в кровоток, то поражает печень и почки, вызывая омертвление клеток органов буквально за несколько дней. Аматоксин может также поразить сердце и отравившегося ждет верная смерть без надлежащего противоядия. Противоядием в этом случае является большое количество Пенициллина, либо проглотившие яд впадут в кому, и в конечном счете умрут от сердечной, или печеночной недостаточности.


Стрихнин


Используемый, как пестицид для отравы мелких животных, Стрихнин - один из самых смертельных ядов на земле. Это естественный яд, содержащийся в некоторых деревьях Азии. Стрихнин также создается искусственно в лабораториях (иронически получив Нобелевскую премию за первую успешную попытку его синтеза). Яд может заразить человека в несметном количестве путей, будь то прием пищи, ингаляция или поглощение. После попадания в организм, в течение нескольких минут начинают сокращаться мышцы, а тошнота и рвота буквально сокрушают жертву. Поскольку вирус распространяется все сильнее, тело начинает биться в конвульсиях, возникает удушье. Весь летальный процесс от приема яда до смерти занимает примерно пол часа.


Ртуть


Все мы знаем о том, что ни в коем случае нельзя разбивать ртутный градусник. Этому есть серьезные основания - ртуть, тяжелый метал, невероятно токсичный для человеческого организма. Если хотя бы капля ртути окажется на вашем теле, кожа начинает зудеть и гореть. Если ртуть проглотить, или вдохнуть её пары, результат будет еще более неприятен - ртуть вызывает потерю памяти, ухудшение зрения, почечную недостаточность и повреждения головного мозга. В конечном счете, опасный яд поражает центральную нервную систему и приводит к смерти.


Тетродотоксин


Печально известный яд, который содержится в организме рыбы Фугу. Мясо этой рыбы является японским деликатесом, и многие ценители суши платят страховой взнос перед употреблением Фугу, в надежде, что повар приготовил все правильно. Тетрадотоксин - летальный яд, и признаки отравления обычно появляются спустя 30 минут после его потребления. Во-первых, вашая ротовая полость будет парализована, будет очень тяжело глотать, координация и речь серьезно нарушатся. Затем начнутся судороги, которые в конечном счете приведут к коме и смерти. Смерть наступает приблизительно спустя 6 часов, но известны случаи, когда тетродотоксин убивал в течение 17 минут. Это делает его одним из самых смертельных ядов на земле.


Яд Рицин


Рицин стал новым предпочтительным ядом для отправки писем по почте, вытеснив Сибирскую язву. Сильно нашумела история с актрисой из сериала "Ходячие Мертвецы", которую осудили за отправку писем с рицином. Были приняты серьезные меры предосторожности на самом высоком уровне. Рицин невероятно летален, поскольку влияет на производство белка в организме, в конечном счете полностью его блокируя. Рицин наиболее смертелен при вдыхании, следовательно, порошкообразная форма позволяет отправлять его письмах. Достаточно всего одной щепотки яда, чтобы убить человека. Учитывая все эти факты - неудивительно, что Рицин был изучен, как инструмент для химической войны.


Ви-Экс (VX)


Самый опасный газ нервно-паралитического действия на планете, этот бывший пестицид стал главной целью вооруженных сил по всему миру, несмотря на его статус запрещенного оружия массового поражения. Действительно, яд Ви-Экс бесполезен в любом другом применении, кроме как химическое вещество во время войны. VX cтоль токсичный, что одна капля яда убьет человека просто при попадании на кожу. Ингаляция является наиболее распространенной формой воздействия, а признаки от отравления VX колеблются от подобных гриппу, до паралича, нарушения дыхания и смерти.


Токсин Ботулизма


Самый смертельный яд на земле - токсин ботулизма. Единственная пробирка, полная Ботулотоксина, может потенциально убить сотни тысяч людей, вызвав ботулизм, поражающий центральную нервную систему. Достаточно интересно, что у Ботулотоксина есть множество вариантов практического применения во всем, начиная от Ботокса, к лечению мигрени. Бывали даже смертельные случаи пациентов в результате процедур, включающих Ботоксные инъекции. Смертность при отравлении Ботулотоксином колеблется в пределах 50%, в то время как остальным угрожают изнурительные осложнения в течение многих лет после лечения. Из-за его изменчивого и легко доступного характера, Ботулотоксин - самый смертельный яд в мире.

Прекрасно знакомые нам продукты и напитки могут оказаться смертельно опасными. А самые простые предметы - содержать яд. Оказывается, самые сильные яды иногда находятся рядом с нами, а мы даже не подозреваем об этом.

Опасные яды

- Метанол, или метиловый спирт является очень опасным ядом. Объясняется это тем, что его легко перепутать с обычным винным спиртом, так как на вкус и запах они неотличимы. Поддельные алкогольные напитки иногда изготавливаются на основе метилового спирта, но без проведения экспертизы установить наличие метанола невозможно. К сожалению, последствия употребления таких напитков необратимы, в лучшем случае человек слепнет.



Ртуть. У всех дома есть самый обычный предмет - ртутный градусник. Оказывается, если в комнате средних размеров разлить ртуть из двух-трех градусников, то этого уже будет достаточно, чтобы вызвать серьезное отравление. Правда, сама элементарная ртуть не опасна, опасны ее пары, а испаряться она начинает уже при комнатной температуре. Кроме градусников, этот же вид ртути содержится в флуоресцентных лампах. Так что будьте осторожнее с ними.



Змеиный яд. Насчитывается более двух с половиной тысяч видов пресмыкающихся, но ядовитых среди них только около 250 видов. Самые известные - обыкновенные гадюки, кобры, гремучие змеи, черные мамбы, маленькие змейки - песчаные эфы.



Люди давно уже выяснили, что змеиный яд опасен лишь при попадании в кровь человека. И, поскольку человечество имеет дело со змеями много тысячелетий, то не удивительно, что именно при изучении воздействия змеиного яда на организмы животных и людей в 1895 году создали первый антидот - противозмеиную сыворотку. Кстати, универсального противоядия нет даже в случае отравления змеиным ядом, для каждого вида змей создается свой антитоксин - для королевской кобры - один, для гадюк - другой, для гремучих змей - третий.

Самый быстрый яд

Существует множество ядов, однако цианид калия до сих пор считается одним из самых быстродействующих. Используют его с давних времен, он является, наверное, самым известным "шпионским" ядом: многие агенты в фильмах и книгах используют цианид в ампулах или таблетках. А о таком его признаке, как запах "горького миндаля", наверное, все читали в замечательных детективах Агаты Кристи.



Отравиться цианидом можно не только при приеме внутрь, но и при вдыхании, при касании. Цианистый калий встречается в некоторых растениях и продуктах, а также сигаретах. Он используется при добыче золота из руды. Убивает цианид, связывая железо в клетках крови, тем самым не давая им доставлять кислород к жизненно важным органам.

Определить цианиды можно с помощью раствора солей трехвалентного железа

Кстати, именно цианистым калием пытались отравить Григория Распутина, но не смогли, так как добавили яд в сладкий пирог. Глюкоза является антидотом для цианистого калия.



Самые доступные яды

Летом и осенью наступает время сезонных отравлений грибами - кстати, это самые доступные отравляющие вещества на сегодняшний день. Наиболее известные ядовитые грибы - ложные опята, бледная поганка, строчки и мухоморы. Больше всего травятся бледной поганкой, так как у нее очень много разновидностей, подчас неотличимых от съедобных грибов, а один такой гриб может привести к смерти нескольких человек.



Хотя немцы научились так готовить мухоморы, что не травятся ими, правда, на приготовление этих грибов у них уходит очень много времени - они их сутки отваривают. Правда, возникает вопрос - зачем им мухоморы, когда можно просто брать для еды другие грибы? Ну и конечно, надо помнить о правилах хранения приготовленных грибов, даже съедобные грибы могут стать ядовитыми при нарушении срока хранения.



Обычные картофель или хлеб тоже могут быть ядовитыми. В картофеле при неправильном хранении накапливается вещество соланин, вызывающее отравление организма. А хлеб становится ядовитым, если для его изготовления была взята мука, в которую попали злаки, зараженные спорыньей. Речь не идет об отравлениях со смертельным исходом, но испортить здоровье такими продуктами вполне возможно.



Кроме того, есть множество бытовой химии и удобрений, которыми тоже можно отравиться. Например, хлористый калий - самое обычное удобрение, но при попадании в кровь становится смертельно опасным, так как ионы калия блокируют деятельность сердца.

Самый известный яд

В Южной Америке самый известный яд - это кураре, яд растительного происхождения, существует несколько подвидов этого яда. Он вызывает паралич дыхательной системы. Изначально его использовали для охоты на животных, в 20 веке успешно применили в медицине.



Есть еще стрихнин, порошок белого цвета, который иногда используется в составе некоторых наркотиков (например, героин и кокаин). Хотя гораздо чаще его применяют при изготовлении пестицидов. Для получения этого порошка берутся семена дерева чилибухи, родина которого - Юго-Восточная Азия и Индия.



Но самый известный яд - это, конечно, мышьяк, его можно назвать "королевским ядом". Применяли его с древнейших времен (его использование приписывают еще Калигуле) для устранения своих недругов и конкурентов в борьбе за престол, неважно, папский или королевский. Это любимый яд европейской знати в Средние века.



Самые известные отравители

Уникальна история итальянской династии отравителей Борджиа, которые возвели отравление практически в ранг искусства. Их приглашения на пир побаивались все без исключения. Самые известные своим коварством представители этой семьи - папа римский Александр VI Борджиа, и его дети: сын Чезаре, ставший кардиналом, а также дочь Лукреция. У этой семьи был свой собственный яд, "кантарелла", предположительно содержавший мышьяк, фосфор и соли меди. Известно, что сам глава семьи в конечном итоге поплатился жизнью за свое коварство, выпив по ошибке чашу с ядом, приготовленную им для другого. Источник заражения ботулизмом - домашние заготовки

Из природных ядов очень опасен батрахотоксин, его выделяет кожа маленьких, но опасных земноводных - лягушек-древолазов, к счастью, встретить их можно только в Колумбии. В одной такой лягушке содержится столько ядовитого вещества, что его достаточно, чтобы уничтожить несколько слонов.



Кроме того, существуют радиоактивные яды, например, полоний. Действует он медленно, но для уничтожения полутора миллионов людей нужен всего 1 грамм этого вещества. Змеиный яд, кураре, цианистый калий - все они уступают вышеназванным ядам.

Ядовитыми бывают не только змеи. Как удалось узнать редакции сайт, самое ядовитое существо на Земле это медуза.