Фенол является. Токсическое действие фенола

Вопрос 2.Фенол, его строение, свойства и применение.

Ответ. Фенолы – органические вещества, производные ароматических углеводородов, в которых гидроксильные группы (одна или несколько) связаны с бензольным кольцом.

Простейший представитель этой группы веществ – фенол, или карболовая кислота С 6 Н 5 ОН. В молекуле фенола π-электроны бензольного кольца оттягивают на себя неподеленные пары электронов атома кислорода гидроксильное группы, вследствие чего увеличивается подвижность атома водорода этой группы.

Физические свойства

Твердое бесцветное кристаллическое вещество, с резким характерным запахом, при хранении окисляется на воздухе и приобретает розовый цвет, плохо растворим в холодной воде, но хорошо растворяется в горячей воде. Температура плавления – 43 °C, кипения – 182 °C. Сильный антисептик, очень ядовит.

Химические свойства

Химические свойства обусловлены взаимным влиянием гидроксильной группы и бензольного кольца.

Реакции по бензольному кольцу

1. Бромирование:

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr.

2 , 4 ,6-трибромфенол (белый осадок)

2. Взаимодействие с азотной кислотой:

C 6 H 5 OH + 3HNO 3 = C 6 H 2 (NO 2) 3 OH + 3H 2 O.

2,4,6-тринитрофенол (пикриновая кислота)

Эти реакции проходят в обычных условиях (без нагревания и катализаторов), тогда как для нитрования бензола требуется температура и катализаторы.

Реакции по гидроксигруппе

1. Как и спирты, взаимодействует с активными металлами:

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2 .

фенолят натрия

2. В отличие от спиртов взаимодействует со щелочами:

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O.

Феноляты легко разлагаются слабыми кислотами:

а) C 6 H 5 ONa + H 2 O + CO 2 = C 6 H 5 OH + NaHCO 3 ;

б) C 6 H 5 ONa + CH 3 I + CO 2 = C 6 H 5 OСH 3 + NaI.

метилфениловый эфир

3. Взаимодействие с галогенопроизводными:

C 6 H 5 OH + C 6 H 5 I = C 6 H 5 OC 2 H 5 + HI

этилфениловый эфир

4. Взаимодействие со спиртами:

C 6 H 5 OH + HOC 2 H 5 = C 6 H 5 OC 2 H 5 + H 2 O.

5. Качественная реакция:

3C 6 H 5 OH + FeCl 3 = (C 6 H 5 O) 3 Fe↓+ 3HCl.

фенолят железа (III)

Фенолят железа (III) имеет коричнево-фиолетовый цвет с запахом туши (краски).

6. Ацелирование:

C 6 H 5 OH + CH 3 COOH = C 6 H 5 OCOCH 3 + H 2 O.

7. Сополиконденсация:

C 6 H 5 OH + СH 2 O + … → - n. –.

метаналь –Н 2 О фенолоформальдегидная смола

Получение

1. Из каменноугольной смолы.

2. Получение из хлорпроизводных:

C 6 H 5 Cl + NaOH = C 6 H 5 ONa + HCl,

2C 6 H 5 ONa + H 2 SO 4 = 2C 6 H 5 OH + Na 2 SO 4 .

3. Кумольный способ:

C 6 H 6 + CH 2 CHCH 3 C 6 H 5 CH(CH 3) 2 ,

C 6 H 5 CH(CH 3) 2 + O 2 С 6 H 5 C(CH 3) 2 OOH C 6 H 5 OH +CH 3 COCH 3.

фенол ацетон

Применение

1. Как антисептик используется в качестве дезинфицирующего средства.

2. В производстве пластмасс (фенолформальдегидная смола).

3. В производстве взрывчатых веществ (тринитрофенол).

4. В производстве фотореактивов (проявители для черно- белой бумаги).

5. В производстве лекарств.

6. В производстве красок (гуашь).

7. В производстве синтетических материалов.

Вопрос 3.Через 200г 40-% раствора КОН пропустили 1,12л СО 2 . Определите тип и массу образовавшейся соли.

Ответ.

Дано: Найти : тип и массу соли.

V(CO 2)= 1,12 л.


Решение

m(KOH безводн)= 200*0,4=80г.

х 1 г 1,12 л x 2 г

2KOH + CO 2 = K 2 CO 3 +H 2 O.

v: 2 моль 1 моль 1 моль

M: 56 г/моль – 138 г/моль

m: 112 г -- 138 г

x 1 = m(KOH) = (1,12* 112)/22,4=5,6 г,

x 2 =m(K 2 CO 3)=138*1,12/22,4=6,9 г.

Поскольку КОН взят в избытке, то образовалась средняя соль К 2 СО 3 , а не кислая КНСО 3 .

Ответ: m(K 2 CO 3)= 6,9 г.

БИЛЕТ №3

Вопрос 1 .Теория строения органических соединений. Значение теории для развития науки.

Ответ. В 1861 г. Русский учёный Александр Михайлович Бутлеров сформулировал основные положения теории строения органических веществ.

1.Молекулы органических соединений состоят из атомов, связанных между собой в определённой последовательности согласно их валентности (C-IV,H-I, O-II, N-III, S-II).

2.Физические и химические свойства вещества зависят не только от природы атомов и их количественного соотношения в молекуле, но и от порядка соединения атомов, то есть от строение молекулы.

3. Химические свойства вещества можно определить, зная его строение молекулы. И наоборот, строение молекулы вещества можно установить опытным путём, изучая химические превращения вещества.

4.В молекулах имеет место взаимное влияние атомов или групп атомов друг на друга:

CH 3 - CH 3 (t кип =88,6 0 С), CH 3 - CH 2 – CH 3 (t кип, = 42,1 0 С)

этан пропан

На основе своей теории Бутлеров предсказал существование изомеров соединений, например двух изомеров бутана (бутана и изобутана):

CH 3 -CH 2 - CH 2 -CH 3 (t кип. =0,5 0 C),

CH 3 -CH(CH 3)- CH 3 (t кип = -11,7 0 С).

2-метилпропан или изобутан

Изомеры – вещества, имеющий одинаковый состав молекулы, но различное химическое строение и по этому обладающие различными свойствами.

Зависимость свойств веществ от их структур- одна из идей, лежащих в основе теории строения органических веществ А.М. Бутлерова.

Значение теории А.М.Бутлерова

1.ответила на основные «Противоречия» органической химии:

а) Многообразие соединений углерода

б) кажущееся несоответствие валентности и органических веществах:

в) различные физические и химические свойства соединений, имеющих одинаковую молекулярную формулу (С 6 Н 12 O 6 – глюкоза и фруктоза).

2. Позволила предсказать существование новых органических веществ, и также указать пути их получения.

3. Дала возможность предвидеть различные случаи изомерии, предугадывать возможные направления реакций.

Вопрос 2.Виды Химической связи в органических и органических соединениях.

Ответ: Основная движущая сила, проводящая к образованию химической связи,- стремление атомов к завершению внешнего энергетического уровня.

Ионная связь – химическая связь, осуществляемая за счёт электростатического притяжения между ионами. Образование ионных связей возможно только между атомами, значения электроотрицательности которых очень сильно различаются.

К ионным соединениями относят галогениды и оксиды щелочных и щелочно-земельных металлов (NAI, KF,CACI 2 ,K 2 O,LI 2 O).

Ионы могут состоять и из нескольких атомов, связи между которыми не ионные:

NаOH = Nа + + OH - ,

Nа 2 SO 4 = 2Nа + + SO 4 2- .

Следует отметить, что свойства ионов существенно отличаются от свойств соответствующих им атомов и молекул простых веществ: Na- металл бурно реагирующий с водой, ион Na + растворяется в ней; H 2 - растворяется в ней; H 2 - газ без цвета, вкуса и запаха, ион H + придает раствору кислый вкус, изменяет цвет лакмуса (на красный).

Свойства ионных соединений

1.Соединения с ионной связью являются электролитами. Электрический ток проводят только растворы и расплавы.

2. Большая хрупкость кристаллических веществ.

Ковалентная связь- химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар.

Ковалентная неполярная связь- связь, образующаяся между атомами, проявляющими одинаковую электроотрицательность. При ковалентной неполярной связи электронная плотность общей пары электронов распределяется в пространстве симметрично относительно ядер общих атомов (H 2 ,I 2, O 2 ,N 2).

Ковалентная полярная связь- ковалентная связь между атомами с различной (но не сильно отличающейся друг от друга) электроотрицательностью (H 2 S, H 2 O,NH 3).

По донорно-акцепторному механизму образуется:NH + 4 , H 3 , O + , SO 3 , NO 2 . В случае возникновения иона NH + 4 атом азота-донор, предоставляющий в общее пользование не поделённую электронную пару, а ион водорода – акцептор, принимающий эту пару и предоставляющий для этого свою орбиталь. При этом образуется донорно-акцепторная (координационная) связь. Атом акцептора приобретает большой отрицательный заряд, а атом донора- положительный.

У Соединений с ковалентной полярной связью температуры кипения и плавления выше, чем к веществ с ковалентной неполярной связью.

В молекулах органический соединений связь атомов ковалентная полярная.

В таких молекулах происходит гибридизация (смешение орбиталей и выравнивание их по формуле и энергии) валентных (внешних) орбиталей атомов углерода.

Гибридные орбитали перекрываются, и образуются прочные химические связи.

Металлические связи- связь, осуществляемая относительно свободными электронами между ионами металлов в кристаллической решетке. Атомы металлов легко отдают электроны, превращаясь в положительно заряженные ионы. Оторвавшиеся электроны свободно перемещаются между положительными ионами металлов, т.е. они обобществлены ионами металлов, т.е. они обобществлены и передвигаются по всему куску металла, в целом электронейтрального.

Свойства металлов.

1. Электропроводимость. Обусловлено наличием свободных электронов, способных создавать электрический ток.

2. Теплопроводность. Обусловлена тем же.

3. Ковкость и пластичность. Ионы и атомы металлов в металлической решетке непосредственно не связаны друг с другом, и отдельные слои металла могут свободно перемещаться один относительно другого.

Водородная связь- может быть межмолекулярной и внутримолекулярной.

Межмолекулярная водородная связь образуется между атомами водорода одной молекулы и атомами сильноэлектроотрицательного элемента (F,O,N)другой молекулы. Такая связь определяет аномально высокие температуры кипения и плавления некоторых соединений (HF,H 2 O). При испарении этих веществ происходит разрыв водородных связей, что требует затрат дополнительной энергии.

Причина водородной связи: при отдаче единственного электрона «своему» атому электроотрицательного элемента водород приобретает относительно сильный положительный заряд, который затем взаимодействует с неподеленной электронной парой «чужого» атома электроотрицательного элемента.

Внутримолекулярная водородная связь осуществляется внутри молекулы. Эта связь определяет структуру нуклеиновых кислот (двойная спираль) и вторичную (спиралевидную) структуру белка.

Водородная связь гораздо слабее ионной или ковалентной, но сильнее, чем межмолекулярное взаимодействие.

Вопрос 3. Решить задачу. 20г нитробензола подвергли реакции восстановления. Найти массу образовавшегося анилина, если выход реакции составляет 50%.

Ответ.

Дано: Найти: m(C 6 H 6 NH 2).

m(C 6 H 6 NO 2) = 20г,

Решение

(C 6 H 6 NO 2) + 3H 2 = C 6 H 6 NH 2 +2H 2 0.

v: 1 моль 1 моль

M: 123г/моль 93 г /моль

х= m теор (C 6 H 6 NH 2) =20*93/123=15г,

m практ = 15*0,5=7,5 г.

Ответ: 7,5 г.

Билет № 4

Свойства Металл Li, K, Rb, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au
Восстановительная способность (отдавать электроны) Возрастает
Взаимодействие с кислородом воздуха Быстро окисляются при обычной температуре Медленно окисляются при обычной температуре или при нагревании Не окисляются
Взаимодействие с водой Выделяется Н 2 и образуется гидроксид При нагревании выделяется водород и образуется гидроксид Не вытесняют водород из воды
Взаимодействие с кислотами Вытесняют водород из разбавленных кислот Не вытеснят водород из разбавленных кислот
Окислительная способность (присоединять электроны) Возрастает

Вопрос 1.Общие свойства металлов. Особенности строение атомов .

Ответ . Атомы металлов сравнительно легко отдают валентные электроны и превращаются при этом в положительно заряженные ионы. Поэтому металлы являются восстановителями. В этом и состоит главная и наиболее общая химическая свойства металлов. Соединениях металлы проявляют только положительные степень окисления. Восстановительная способность разных металлов не одинакова и возрастает в электрохимическом ряду напряжений металлов от Au и до Li.

Физические свойства

1.Электропроводность. Обусловлена наличием в металлах свободных электронов, образующих электрический ток(направленное движение электронов).

2.Теплопроводность.

3.Ковкость и пластичность.

Металлы c ρ <5 г /см 3 – легкие, c ρ > 5 г/см 3 – тяжелые.

Легкоплавкие металлы: c t пл < 1000 0 C ,тугоплавкие – c t пл >1000 0 C.

Схемы взаимодействия металлов с серной кислотой.

Разбавленная H 2 SO 4 растворяет металлы расположенные в ряду стандартных электродных потенциалов (ряд активности металлов)до водорода:

M + H 2 SO 4 (разб.) → соль + H 2

(M = (Li →Fe) в ряду активности металлов).

При этом образуются соответствующая соль и вода.

С Ni разбавленная H 2 SO 4 реагирует очень медленно, с Ca, Mn, и Pb кислота не реагирует. При действии кислоты на поверхности свинца образуется пленка PbSO 4 , защищающая его от дальнейшего взаимодействия с кислотой.

Концентрированная H 2 SO 4 при обычной температуре со многими металлами не взаимодействует. Однако при нагревании концентрированная кислота реагирует почти со всеми металлами (кроме Pt ,Au и некоторых других). При этом кислота восстанавливается до H 2 S,или SO 2:

M + H 2 SO 4 (конц.) → соль + H 2 O + H 2 S (S ,SO 2).

Водород в этих реакциях не выделяется, а образуется вода.

Схемы взаимодействия металлов с азотной кислотой.

При взаимодействии металлов с HNO 3 водород не выделяется; он окисляется, образуя воду. В зависимости от активности металла кислота может восстанавливаться до соединений.

5 +4 +2 +1 0 -3 -3

HNO 3 →NO 2 → NO→ N 2 O→N 2 →NH 3 (NH 4 NO 3).

При этом образуется также и соль азотной кислоты.

Разбавленная HNO 3 реагирует со многими металлами (исключение: Ca ,Cr ,Pb, Au) чаще всего с образованием NH 3 ,NH 4 NO 3 ,N 2 или NO:

M + HNO 3 (разб.) → соль + H 2 O + NH 3 (NH 4 NO 3 , N 2 ,NO).

Концентрированная HNO 3 взаимодействует в основном с тяжелыми металлами с образованием N 2 O или NO 2:

M + HNO 3 (конц.) → соль + H 2 O + N 2 O(NO 2­).

При обычной температуре эта кислота (сильный окислитель) не реагирует с Al ,Cr, Fe и Ni. Она легко переводит их в пассивное состояние (на поверхности металла образуется плотная защитная оксидная пленка, препятствующая контакту металла со средой.)

Вопрос 2. Крахмал и целлюлоза. Сравнить их строение и свойства. Их применение.

Ответ. Строение крахмала: структурное звено – остаток молекулы

α-глюкозы. Строение целлюлозы: структурное звено-остаток молекулы β-глюкозы.

Физические свойства

Крахмал-белый хрустящий порошок,нерастворимый в холодной воде. В горячей воде образует коллоидный раствор-клейстер.

Целлюлоза-твердое волокнистое вещество,нерастворимое в воде и органических растворителях.

Химические свойства

1. Крахмал целлюлоза подвергаются гидролизу:

(C 6 H 10 O 5) n + nH 2 O=nC 6 H 12 O 6 .

При гидролизе крахмала образуется альфа-глюкоза, при гидролизе целлюлоза бета-глюкоза.

2. Крахмал с йодом дает синие окрашивание(в отличие от целлюлозы).

3. Крахмал переваривается в пищеварительной системой человека,а целлюлоза не переваривается.

4. Для целлюлозы характерна реакция этерификации:

[(C 6 H 7 O 2)(OH) 3 ] n +3nHONO 2 (конц.) [(C 6 H 7 O 2)(ONO 2) 3 ] n +3nH 2 O.

тринитроцеллюлоза

5. Молекулы крахмала имеют как линейную, так и разветвленную структуру. Молекулы же целлюлоза имеет линейное (то есть не разветвленное) строение, благодаря чему целлюлоза легко образует волокна.Это основное различие крахмала и целлюлозы.

6.Горение крахмала и целлюлозы:

(C 6 H 10 O 5) n +O 2 =CO 2 +H 2 O+Q.

Без доступа воздуха происходит термическое разложение. Образуются CH 3 O, CH 3 COOH, (CH 3) 2 CO и др.

Применение

1. Путем гидролиза превращают в потоку и глюкозу.

2. Как ценный и питательный продукт(основной углевод пищи человека-хлеба,крупы,картофеля).

3. В производстве клейстера.

4. В производстве красок (загуститель)

5. В медицине (для приготовления мазей, присыпок).

6. Для накрахмаливания белья.

Целлюлоза:

1. В производстве ацетатного волокна,оргстекла, негорючей пленки(целлофан).

2. При изготовлении бездымного пороха(тринитроцеллюлоза).

3. В производстве целлулоида и колодита (динитроцеллюлоза).

Вопрос 3. К 500 грамм 10% раствора NACL прибавили 200 грамм 5% раствора того же вещества, потом еще 700 грамм воды. Найдите процентную концентрации полученного раствора.


Ответ. Найти:m 1 (NаCl)= 500г

Дано:

ω 1 (NаCl)=10%

m 2 (NаCl)=200г

Решение

m 1 (NaCl, безв.)=500 *10\100 = 50 г,

m 2 (NaCl, безв.)=200*5\100=10 г,

m (р-ра)=500+200+700=1400г,

m общ (NaCl)=50+10=60г,

ω 3 (NaCl)=60\1400 * 100 % = 4,3 %

Ответ: ω 3 (NaCl)=4,3 %

БИЛЕТ № 5

Вопрос 1. Ацетилен. Его строение, свойства, получение и применение.

Ответ. Ацетилен относится к классу алкинов.

Ацетеленовые углеводороды, или алкины, -непредельные (ненасыщенные) углеводороды с общей формулой , в молекулах которых между атомами углерода есть тройная связь.

Электронное строение

Углерод в молекуле ацетилена находится в состоянии sp – гибридизации. Атомы углерода в этой молекуле образуют тройную связь, состоящую из двух -связей и одной σ-связи.

Молекулярная формула: .

Графическая формула: H-C≡ C-H

Физические свойства

Газ, легче воздуха, малорастворим в воде, в чистом виде почти без запаха, бесцветный, = - 83,6 . (В ряду алкинов с увеличением молекулярной массы алкина температуры кипения и плавления увеличиваются.)

Химические свойства

1. Горение:

2. Присоединение:

а) водорода:

б) галогена:

C 2 H 2 + 2Cl 2 = C 2 H 2 Cl 4 ;

1,1,2,2-тетрохлорэтан

в) галогеноводорода:

HC≡CH + HCl = CHCl

винилхлорид

CH 2 =CHCl + HCl = CH 3 -CHCl 2

1,1-дихлорэтан

(по правилу Марковникова);

г) воды(реакция Кучерова):

HC=CH + H 2 O = CH 2 =CH-OH CH 3 -CHO

виниловый спирт уксусный альдегид

3. Замещение:

HC≡CH + 2AgNO 3 + 2NH 4 = AgC≡CAg↓+ 2NH 4 NO 3 + 2H 2 O.

ацетиленид серебра

4. Окисление:

HC≡CH + + H 2 O → HOOC-COOH ( -KMnO 4).

щавельная кислота

5. Тримеризация:

3HC≡CH t, кат

6. Димеризация:

HC≡CH + HC≡CH КАТ. HC≡C - HC=CH 2

винилацетилен

Получение

1. Дегидрирование алканов (крекинг жидких нефтяных фракций):

C 2 H 6 = C 2 H 2 + 2H 2 .

2. Из природного газа (термический крекинг метана):

2CH 4 C 2 H 2 + 3H 2

3. Карбидный способ:

CaC 2 + 2H 2 O = Ca(OH) 2 + C 2 H 2

Применение

1.В производстве винилхлорида, ацетальдегида, винилацетата, хлоропрена, уксусной кислоты и других органических веществ.

2.В синтезе каучука и поливинилхлоридных смол.

3.В производстве поливинилхлорида (кожзаменитель).

4.В производстве лаков, лекарств.

5.При изготовлении взрывчатых веществ (ацетилениды).

Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

    Реакции по гидроксильной группе

Фенолы, так же, как и алифатические спирты, обладают кислыми свойствами, т.е. способны образовывать соли – феноляты . Однако они более сильные кислоты и поэтому могут взаимодействовать не только со щелочными металлами (натрий, литий, калий), но и со щелочами и карбонатами:

Константа кислотности рК а фенола равна 10. Высокая кислотность фенола связана с акцепторным свойством бензольного кольца (эффект сопряжения ) и объясняется резонансной стабилизацией образующегося фенолят-аниона. Отрицательный заряд на атоме кислорода фенолят-аниона за счет эффекта сопряжения может перераспределяться по ароматическому кольцу, этот процесс можно описать набором резонансных структур:

Ни одна из этих структур в отдельности не описывает реального состояния молекулы, но их использование позволяет объяснять многие реакции.

Феноляты легко взаимодействуют с галогеналканами и галогенангидридами:

Взаимодействие солей фенола с галогеналканами – реакция О-алкилирования фенолов. Это способ получения простых эфиров (реакция Вильямсона, 1852 г.).

Фенол способен взаимодействовать с галогенангидридами и ангидридами кислот с получением сложных эфиров (О-ацилирование):

Реакция протекает в присутствии небольших количеств минеральной кислоты или при нагревании.

    Реакции по бензольному кольцу

Гидроксил является электронодонорной группой и активирует орто - и пара -положения в реакциях электрофильного замещения:

Галогенирование

Галогенирование фенолов действием галогенов или галогенирующих агентов протекает с большой скоростью:

Нитрование

При действии азотной кислоты в уксусной кислоте (в присутствии небольшого количества серной кислоты) на фенол получается 2-нитрофенол:

Под действием концентрированной азотной кислоты или нитрующей смеси фенол интенсивно окисляется, что приводит к глубокой деструкции его молекулы. При использовании разбавленной азотной кислоты нитрование сопровождается сильным осмолением несмотря на охлаждение до 0°С и приводит к образованию о- и п- изомеров с преобладанием первого из них:

При нитровании фенола тетраоксидом диазота в инертном растворителе (бензол, дихлорэтан) образуется 2,4-динитрофенол:

Нитрование последнего нитрующей смесью протекает легко и может служить методом синтеза пикриновой кислоты:

Эта реакция идет с саморазогреванием.

Пикриновую кислоту получают также через стадию сульфирования. Для этого обрабатывают фенол при 100°С избыточным количеством серной кислоты, получают 2,4-дисульфопроизводное, которое не выделяя из реакционной меси обрабатывают дымящей азотной кислотой:

Введение двух сульфогрупп (также как и нитрогрупп) в бензольное ядро делает его устойчивым к окисляющему действию дымящей азотной кислоты, реакция не сопровождается осмолением. Такой метод получения пикриновой кислоты удобен для производства в промышленном масштабе.

Сульфирование . Сульфирование фенола в зависимости от температуры протекает в орто - или пара -положение:

Алкилирование и ацилирование по Фриделю-Крафтсу . Фенолы образуют с хлористым алюминием неактивные соли ArOAlCl 2 , поэтому для алкилирования фенолов в качестве катализаторов применяют протонные кислоты (H 2 SO 4) или металлооксидные катализаторы кислотного типа (Al 2 O 3). Это позволяет использовать в качестве алкилирующих агентов только спирты и алкены:

Алкилирование протекает последовательно с образованием моно-, ди- и триалкилфенолов. Одновременно происходит кислотно-катализируемая перегруппировка с миграцией алкильных групп:

Конденсация с альдегидами и кетонами . При действии щелочных или кислотных катализаторов на смесь фенола и альдегида жирного ряда происходит конденсация в о - и п -положениях. Эта реакция имеет очень большое практическое значение, так как лежит в основе получения важных пластических масс и лаковых основ. При обычной температуре рост молекулы за счет конденсации идет в линейном направлении:

Если реакцию проводить при нагревании, начинается конденсация с образованием разветвленных молекул:

В результате присоединения по всем доступным о - и п -положениям образуется трехмерный термореактивный полимер – бакелит. Бакелит отличается высоким электрическим сопротивлением и термостойкостью. Это один из первых промышленных полимеров.

Реакция фенола с ацетоном в присутствии минеральной кислоты приводит к получению бисфенола:

Последний используют для получения эпоксисоединений.

Реакция Кольбе – Шмидта. Синтез фенилкарбоновых кислот.

Феноляты натрия и калия реагируют с углекислым газом, образуя в зависимости от температуры орто- или пара-изомеры фенилкарбоновых кислот:

Окисление

Фенол легко окисляется под действием хромовой кислоты до п -бензохинона:

Восстановление

Восстановление фенола в циклогексанон используют для получения полиамида (найлон-6,6)

На рисунке показана взаимосвязь различных методов производства фенола, а в таблице под теми же номерами приведены их технико-экономические показатели (в % относительно сульфонатного метода).

Рис. 1.1. Методы производства фенола

Таблица 1.3

Технико-экономические показатели производства фенола
Методы
Показатель 1 2 3 4 5 6
Капитальные затраты 100 83 240 202 208 202
Стоимость сырья 100 105 58 69 72 45
Себестоимость 100 96 70 73 76 56

Таким образом, наиболее целесообразным с экономической точки зрения является наиболее востребованный в настоящее время кумольный процесс. Ниже кратко описаны промышленные процессы, которые в то или иное время использовались для получения фенола.

1. Сульфонатный процесс был первым фенольным процессом, реализованным в промышленном масштабе фирмой «BASF» в 1899 г. Этот метод основан на сульфировании бензола серной кислотой с последующим щелочным плавлением сульфокислоты. Несмотря на применение агрессивных реагентов и образование большого количества отходов сульфита натрия, данный метод использовался в течение почти 80 лет. В США это производство было закрыто лишь в 1978 году.

2. В 1924 г. фирмой «Dow Chemical» был разработан процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола (процесс каталитического гидролиза галогензамещенных бензолов ). Независимо аналогичная технология была разработана немецкой фирмой «I.G. Farbenindustrie Co». Впоследствии стадия получения монохлорбензола и стадия его гидролиза были усовершенствованы, и процесс получил название «процесс Рашига». Суммарный выход фенола по двум стадиям составляет 70-85%. Данный процесс был основным методом получения фенола в течение нескольких десятилетий.

3. Циклогексановый процесс , разработанный фирмой «Scientific Design Co.», основан на окислении циклогексана в смесь циклогексанона и циклогексанола, которая далее дегидрируется с образованием фенола. В 60-е годы фирма «Monsanto» в течение нескольких лет использовала этот метод на одном из своих заводов в Австралии, однако в дальнейшем перевела его на кумольный способ получения фенола.

4. В 1961 г. фирмой «Dow Chemical of Canada» был реализован процесс через разложение бензойной кислоты , это единственный способ синтеза фенола, основанный на использовании небензольного сырья. Обе реакции протекают в жидкой фазе. Первая реакция. окисление толуола. использовалась в Германии уже в период Второй мировой войны для получения бензойной кислоты. Реакция протекает в довольно мягких условиях с высоким выходом. Вторая стадия является более трудной вследствие дезактивации катализатора и низкой селективности по фенолу. Полагают, что проведение этой стадии в газовой фазе может сделать процесс более эффективным. В настоящее время этот метод используется на практике, хотя его доля в мировом производстве фенола составляет лишь около 5%.

5. Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П. Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В ромышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.

Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен. Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.


Рис. 1.2. Рецикл ацетона с получением пропилена

Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер. Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.

Фенолы — органические вещества,молекулы которых содержат радикал фенил,связанный с одной или несколькими гидроксогруппами. Так же как и спирты, фенолы классифицируют по атомности, т.е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и многоатомные фенолы, содержащие три и более гидроксильных групп в бензольном кольце.

Познакомимся поподробнее со строением и свойствами простейшего представителя этого класса- фенолом С 6 Н 5 ОН. Название этого вещества и легло в основу в основу названия всего касса — фенолы.

Физические свойства фенола

Фенол-твердое, бесцветное кристаллическое вещества, t°плавления=43°С, t°кипения=181°С, с резким характерным запахом.Ядовит.Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой.При попадании на кожу он вызывает ожоги,поэтому с фенолом нужно обращаться очень осторожно!

Химические свойства фенола

Фенолы в большинстве реакций по связи О–Н активнее , поскольку эта связь более полярна за счет смещения электронной плотности от атома кислорода в сторону бензольного кольца (участие неподеленной электронной пары атома кислорода в системе p-сопряжения). Кислотность фенолов значительно выше, чем спиртов. Для фенолов реакции разрыва связи С-О не характерны, поскольку атом кислорода прочно связан с атомом углерода бензольного кольца за счет участия своей неподеленной электронной пары в системе сопряжения. Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- и пара-положениях ( ОН-группы)

Кислотные свойства фенола

Атом водорода гидроксильной группы обладает кислотным характером. Т.к. кислотные свойства у фенола выражены сильнее, чем у воды и спиртов, то фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов:

Кислотность фенолов зависит от природы заместителей (донор или акцептор электронной плотности), положения относительно ОН-группы и от количества заместителей. Наибольшее влияние на ОН-кислотность фенолов оказывают группы, расположенные в орто- и пара-положениях. Доноры увеличивают прочность связи О-Н (тем самым уменьшая подвижность водорода и кислотные свойства), акцепторы уменьшают прочность связи О-Н, при этом кислотность возрастает:

Однако кислотные свойства у фенола выражены слабее, чем у неорганический и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше,чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол.

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:


Качественная реакция на фенол

Фенол реагирует с хлоридом железа (3) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах.Другие фенолы,содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(3).

Реакции бензольного кольца фенола

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

  1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавление катализатора (бромид железа(3)). Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара- положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же как и реакция с хлоридом железа(3), служит для качественного обнаружения фенола .

2. Нитрирование фенола также происходит легче, чем нитрирование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и паро изомеров нитрофенола:

При использовании концентрированной азотной кислоты образуется 2,4,6, тринитритфенол-пикриновая кислота, взрывчатое вещество:

3. Гидрирование ароматического ядра фенола в присутствии катализатора проходит легко:

4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

В молекуле димера сохраняются «подвижные» атомы водорода, а значит,возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсаци, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта(воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение этой же реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде.В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимера на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению,действию воды, щелочей, кислот.Они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин,полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы,сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе.Таким образом, фенол и продукты на его основе находят широкое применение.

Применение фенолов

Фенол — твердое вещество, с характерным запахом, вызывает ожоги при попадании на кожу. Ядовит. Растворяется в воде, его раствор называют карболовой кислотой (антисептик). Она была первым антисептиком введенным в хирургию. Широко используется для производства пластмасс, лекарственных средств (салициловая кислота и ее производные), красителей, взрывчатых веществ.


Фенолы – это производные аренов, у которых один или несколько атомов водорода ароматического кольца замещены на ОН-группу.

Классификация.

1. Одноатомные фенолы:

2. Многоатомные фенолы:

Физические свойства:

Фенол и его низшие гомологи – бесцветные низкоплавкие кристаллические вещества или жидкости с характерным запахом.

Фенол умеренно растворим в воде. Фенол способен образовывать водородные связи, что лежит в основе его антисептических свойств. Водные растворы фенола вызывают ожоги тканей. Разбавленный водный раствор фенола называется карболовой кислотой. Фенол – токсичен, токсичность гомологов фенола уменьшается, бактерицидная активность увеличивается по мере усложнения алкильного радикала.

Способы получения фенолов

1. Из каменноугольной смолы.

2. Кумольный метод

3. Сплавление солей ароматических сульфокислот с щелочью:

4. Разложение солей диазония:

5. Гидролиз галогенпроизводных

§11. Химические свойства фенолов .

1. Кислотные свойства: фенолы образуют соли:

Фенол – более слабая кислота, чем угольная Н 2 СО 3:

2. Реакции с участием ОН-группы.

а) алкилирование (образование простых эфиров)

б) ацилирование (образование сложных эфиров):

3. Реакции замещения ОН-группы:

Фенол с NH 3 и R – NH 2 не взаимодействует.

4. Реакции электрофильного замещения, характерные для аренов.

Замещение протекает быстрее, чем у бензола. ОН-группа направляет новый заместитель в орто- и пара-положения.

а) галогенирование (обесцвечивание бромной воды – качественная реакция на фенол):

б) нитрование

в) сульфирование:

5. Реакции конденсации

а) с формальдегидом

б) с фталевым ангидридом

6. Окисление

а) на воздухе белые кристаллы фенола розовеют;

б) фенол с раствором FeCl 3 дает красно-фиолетовое окрашивание;

крезол – голубое окрашивание;

в) окисление сильными окислителями

7. Восстановление

8. Карбоксилирование (реакция Кольбе – Шмитта):

Применение

1. Фенол применяется в производстве фенолформальдегидных смол, капролактама, пикриновой кислоты, красителей, инсектицидов, лекарственных средств.

2. Пирокатехин и его производные используются в производстве лекарственных средств (получен синтетический гормон – адреналин) и душистых веществ.

3. Резорцин применяют в синтезе красителей; в медицине в качестве дезинфицирующего средства.

Экспериментальная часть

Опыт 1 . Влияние радикала и количества гидроксильных групп на растворимость спиртов.

В три пробирки внесите 4-5 капель этилового, изоамилового спиртов и глицерина. В каждую пробирку добавьте по 5-6 капель воды, взболтайте. Что наблюдали?

Опыт 2. Обнаружение воды в этиловом спирте и его обезвоживание.

В сухую пробирку внесите 10 капель этилового спирта, добавьте немного обезвоженного сульфата меди, тщательно перемешайте, дайте отстояться. Если спирт содержит воду, осадок сульфата меди окрасится в голубой цвет вследствии образования медного купороса СuSO 4 · 5H 2 O. Сохраните обезвоженный спирт для дальнейшего опыта.

Опыт 3. Образование этилата натрия.

Поместите в сухую пробирку маленький кусочек натрия, добавьте 3 капли обезвоженного этилового спирта (из предыдущего опыта) и закройте отверстие пробирки пальцем. Тут же начинается выделение водорода.

По окончании реакции, не отрывая пальца от отверстия пробирки, поднесите ее к пламени горелки. При открытии пробирки водород воспламеняется с характерным звуком, образуя колечко голубоватого цвета. На дне пробирки остается беловатый осадок этилата натрия или его раствор.

При добавлении в пробирку 1 капли спиртового раствора фенолфталеина появляется красное окрашивание.

Напишите уравнения протекающих реакций.

Опыт 4. Окисление этилового спирта хромовой смесью.

Введите в пробирку 3-4 капли этилового спирта. Добавьте 1 каплю 2н раствора серной кислоты и 2 капли 0,5н раствора бихромата калия. Полученный оранжевый раствор нагрейте над пламенем горелки до начала изменения цвета. Обычно уже через несколько секунд цвет раствора становится синевато-зеленым. Одновременно ощущается характерный запах уксусного альдегида, напоминающий запах яблок. Метод можно применять для распознавания первичных и вторичных спиртов.

Напишите уравнения реакций.

Опыт 5. Получение этилацетата.

В сухую пробирку поместите немного порошка обезвоженного ацетата натрия (высота слоя около 2мм) и 3 капли этилового спирта. Добавьте 2 капли концентрированной серной кислоты и нагрейте осторожно над пламенем горелки. Через несколько секунд появляется характерный приятный освежающий запах уксусноэтилового эфира.

Уравнения реакции:

СН 3 С(О)ОNа + НОSО 3 Н NаНSО 4 + СН 3 С(О)ОН

С 2 Н 5 ОН + НОSО 3 Н Н 2 О + С 2 Н 5 ОSО 3 Н

СН 3 С(О)ОН + НОSО 3 Н Н 2 SО 4 + СН 3 С(О)О С 2 Н 5

Опыт 6. Реакция глицерина с гидроксидом меди (II) в щелочной среде.

Поместите в пробирку 3 капли 0,2н раствора СuSO 4 , 2 капли 2н раствора NаОН и перемешайте. Появляется студенистый осадок гидроксида меди (II):

При нагревании в щелочной среде до кипения полученный гидроксид

меди (II) разлагается. Это обнаруживается по выделению черного осадка оксида меди (II):

Повторите опыт, но перед кипячением гидроксида меди (II) добавьте в пробирку 1 каплю глицерина. Взболтайте. Нагрейте до кипения полученный раствор и убедитесь в том, что раствор глицерата меди при кипячении не разлагается. Здесь образуется хелатное соединение

Опыт 7. Образовавние акролеина из глицерина.

Поместите в пробирку 3-4 кристалла бисульфата калия и 1 каплю глицерина. Нагрейте на пламени горелки. Признаком начавшегося разложения глицерина служит побурение жидкости в пробирке и появление тяжелых паров образующегося акролеина, обладающего очень резким запахом.

Опыт 8. Растворимость фенола в воде.

Поместите в пробирку 1 каплю жидкого фенола, добавьте 1 каплю воды и

взболтайте. Получится мутная жидкость – эмульсия фенола. При стоянии

такая эмульсия расслаивается, причем внизу будет раствор воды в феноле,

или жидкий фенол, а вверху – раствор фенола в воде, или карболовая вода.

Прибавляйте по каплям воду, каждый раз встряхивая пробирку, пока не

получится прозрачный раствор фенола в воде. Сохраните полученную

фенольную воду для последующих опытов.

Опыт 9 .Цветные реакции на фенольную воду.

Поместите в пробирку 3 капли прозрачной фенольной воды и добавьте 1 каплю 0,1н раствора FeCl 3 – появляется фиолетовое окрашивание.

Более чувствительной реакцией на фенол является цветная индофеноловая

Поместите в пробирку 1 каплю прозрачной карболовой воды. Добавьте к ней 3 капли 2н раствора NН 4 ОН и затем 3 капли насыщенного раствора бромной воды. Через несколько секунд на белом фоне бумаги можно заметить синее окрашивание, постепенно увеличивающееся за счет образования красящего вещества – индофенола.

Опыт 10. Образование трибромфенола.

Поместите в пробирку 3 капли бромной воды и добавьте 1 каплю прозрачной карболовой воды. Фенолы со свободными орто- и пара-положениями обесцвечивают бромную воду и образуют при этом продукты замещения, которые обычно выпадают в осадок.

Опыт 11. Доказательство кислотного характера фенола.

К остатку фенольной воды добавьте еще 1 каплю фенола и встряхните. К вновь полученной эмульсии добавьте 1 каплю 2н раствора NаОН. Моментально образуется прозрачный раствор фенолята натрия, так как он хорошо растворяется в воде.

§10. Задачи для самостоятельного решения .

1. Напишите структурные формулы следующих соединений:

3-метил-2-пентанол; 2-метил-3-бутин-2-ол; 1-фенилпропанол-1.

2. Реакцией Гриньяра получите следующие спирты:

1) 2-метил-3-пентанол;

2) 2,3-диметил-3-пентанол;

3) 2,2-диметил-1-пропанол.

3. Получите гидратацией соответствующих этиленовых углеводородов

следующие спирты:

а) 2-метилпентанол-2; б) 3,3-диметилбутанол-2.

4. Напишите реакции окисления вторичного бутилового спирта;

2-метилбутанола-1.

5. Подвергните 2-пентанол дегидратации, затем продукт реакции окислите водным раствором перманганата калия. Полученное соединение обработайте уксусной кислотой. Напишите уравнения реакций и назовите все продукты.

6. Получите фенол из бензола и 1-бутена через стадию образования гидроперекиси втор.бутила.

7. Опишите схему следующих превращений:

8. Расположите следующие соединения в порядке убывания кислотных свойств: