Пошаговое разъяснение как найти матрицу обратную данной. Матричный метод решения слау: пример решения с помощью обратной матрицы

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:

Алгебраические дополнения. ∆ 1,2 = -(2·4-(-2·(-2))) = -4 ∆ 2,1 = -(2·4-5·3) = 7 ∆ 2,3 = -(-1·5-(-2·2)) = 1 ∆ 3,2 = -(-1·(-2)-2·3) = 4
A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

Нахождение обратной матрицы - процесс, который состоит из достаточно простых действий. Но эти действия повторяются так часто, что процесс получается довольно продолжительным. Главное - не потерять внимание при решении.

При решении наиболее распространённым методом - алгебраических дополнений - потребуется:

При решении примеров мы разберём эти действия подробнее. А пока узнаем, что гласит теория об обратной матрице.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a , не равного нулю, существует такое число b , что произведение a и b равно единице: ab = 1 . Число b называется обратным для числа b . Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Обратной матрицей , которую требуется отыскать для данной квадратной матрицы А , называется такая матрица

произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором, как было замечено в начале урока, требуется находить определители, миноры и алгебраические дополнения и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу . Умножим обе части этой матрицы на , тогда получим

,

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

В результате должна получиться обратная матрица.

Проверить решение можно с помощью онлайн калькулятора для нахождения обратной матрицы .

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

Матричная алгебра - Обратная матрица

Обратная матрица

Обратной матрицей называется матрица, которая при умножении как справа, так и слева на данную матрицу дает единичную матрицу.
Обозначим обратную матрицу к матрице А через , тогда согласно определению получим:

где Е – единичная матрица.
Квадратная матрица называется неособенной (невырожденной ), если ее определитель не равен нулю. В противном случае она называется особенной (вырожденной ) или сингулярной .

Имеет место теорема: всякая неособенная матрица имеет обратную матрицу.

Операция нахождения обратной матрицы называется обращением матрицы. Рассмотрим алгоритм обращения матрицы. Пусть дана неособенная матрица n -го порядка:

где Δ = det A ≠ 0.

Алгебраическим дополнением элемента матрицы n -го порядка А называется взятый с определенным знаком определитель матрицы (n –1)-го порядка, полученной вычеркиванием i -ой строки и j -го столбца матрицы А :

Составим так называемую присоединенную матрицу:

где– алгебраические дополнения соответствующих элементовматрицы А .
Заметим, что алгебраические дополнения элементов строк матрицы А размещаются в соответствующих столбцах матрицы Ã , то есть одновременно производится транспонирование матрицы.
Разделив все элементы матрицы Ã на Δ – величину определителя матрицы А , получим в результате обратную матрицу:

Отметим ряд особых свойств обратной матрицы:
1) для данной матрицы А ее обратная матрица является единственной;
2) если существует обратная матрица , то правая обратная и левая обратная матрицы совпадают с ней;
3) особенная (вырожденная) квадратная матрица не имеет обратной матрицы.

Основные свойства обратной матрицы:
1) определитель обратной матрицы и определитель исходной матрицы являются обратными величинами;
2) обратная матрица произведения квадратных матриц равна произведениюобратных матриц сомножителей, взятому в обратном порядке:

3) транспонированная обратная матрица равна обратной матрице от данной транспонированной матрицы:

П р и м е р. Вычислить матрицу, обратную данной.

Как правило, обратные операции используются для упрощения сложных алгебраических выражений. Например, если в задаче присутствует операция деления на дробь, можно заменить ее операцией умножения на обратную дробь, что является обратной операцией. Более того, матрицы делить нельзя, поэтому нужно умножать на обратную матрицу. Вычислять матрицу, обратную матрице размером 3х3, довольно утомительно, но нужно уметь делать это вручную. Также обратную величину можно найти с помощью хорошего графического калькулятора.

Шаги

С помощью присоединенной матрицы

Транспонируйте исходную матрицу. Транспонирование – это замена строк на столбцы относительно главной диагонали матрицы, то есть нужно поменять местами элементы (i,j) и (j,i). При этом элементы главной диагонали (начинается в верхнем левом углу и заканчивается в нижнем правом углу) не меняются.

  • Чтобы поменять строки на столбцы, запишите элементы первой строки в первом столбце, элементы второй строки во втором столбце, а элементы третьей строки в третьем столбце. Порядок изменения положения элементов показан на рисунке, на котором соответствующие элементы обведены цветными кружками.
  • Найдите определить каждой матрицы размером 2х2. Каждый элемент любой матрицы, включая транспонированную, связан с соответствующей матрицей 2х2. Чтобы найти матрицу 2х2, которая соответствует определенному элементу, зачеркните строку и столбец, в которых находится данный элемент, то есть нужно зачеркнуть пять элементов исходной матрицы 3х3. Незачеркнутыми останутся четыре элемента, которые являются элементами соответствующей матрицы 2х2.

    • Например, чтобы найти матрицу 2х2 для элемента, который расположен на пересечении второй строки и первого столбца, зачеркните пять элементов, которые находятся во второй строке и первом столбце. Оставшиеся четыре элемента являются элементами соответствующей матрицы 2х2.
    • Найдите определитель каждой матрицы 2х2. Для этого произведение элементов второстепенной диагонали вычтите из произведения элементов главной диагонали (смотрите рисунок).
    • Подробную информацию о матрицах 2х2, соответствующих определенным элементам матрицы 3х3, можно найти в интернете.
  • Создайте матрицу кофакторов. Результаты, полученные ранее, запишите в виде новой матрицы кофакторов. Для этого найденный определитель каждой матрицы 2х2 напишите там, где располагался соответствующий элемент матрицы 3х3. Например, если рассматривается матрица 2х2 для элемента (1,1), ее определитель запишите в позиции (1,1). Затем поменяйте знаки соответствующих элементов согласно определенной схеме, которая показана на рисунке.

    • Схема изменения знаков: знак первого элемента первой строки не меняется; знак второго элемента первой строки меняется на противоположный; знак третьего элемента первой строки не меняется и так далее построчно. Обратите внимание, что знаки «+» и «-», которые показаны на схеме (смотрите рисунок), не свидетельствуют о том, что соответствующий элемент будет положительным или отрицательным. В данном случае знак «+» говорит о том, что знак элемента не меняется, а знак «-» свидетельствует об изменении знака элемента.
    • Подробную информацию о матрицах кофакторов можно найти в интернете.
    • Так вы найдете присоединенную матрицу исходной матрицы. Иногда ее называют комплексно-сопряженной матрицей. Такая матрица обозначается как adj(M).
  • Разделите каждый элемент присоединенной матрицы на определитель. Определитель матрицы М был вычислен в самом начале, чтобы проверить, что обратная матрица существует. Теперь разделите каждый элемент присоединенной матрицы на этот определитель. Результат каждой операции деления запишите там, где находится соответствующий элемент. Так вы найдете матрицу, обратную исходной.

    • Определитель матрицы, которая показана на рисунке, равен 1. Таким образом, здесь присоединенная матрица является обратной матрицей (потому что при делении любого числа на 1 оно не меняется).
    • В некоторых источниках операция деления заменяется операцией умножения на 1/det(М). При этом конечный результат не меняется.
  • Запишите обратную матрицу. Запишите элементы, расположенные на правой половине большой матрицы, в виде отдельной матрицы, которая является обратной матрицей.

    С помощью калькулятора

      Выберите калькулятор, который работает с матрицами. С помощью простых калькуляторов нельзя найти обратную матрицу, но это можно сделать на хорошем графическом калькуляторе, таком как Texas Instruments TI-83 или TI-86.

      Введите исходную матрицу в память калькулятора. Для этого нажмите кнопку Matrix (Матрица), если она есть. В случае калькулятора Texas Instruments, возможно, понадобится нажать кнопки 2 nd и Matrix.

      Выберите меню Edit (Редактирование). Сделайте это с помощью кнопок со стрелками или соответствующей функциональной кнопки, которая находится в верхней части клавиатуры калькулятора (расположение кнопки зависит от модели калькулятора).

      Введите обозначение матрицы. Большинство графических калькуляторов умеет работать с 3-10 матрицами, которые можно обозначить буквами А-J. Как правило, просто выберите [A], чтобы обозначить исходную матрицу. Затем нажмите кнопку Enter (Ввод).

      Введите размер матрицы. В данной статье говорится о матрицах 3х3. Но графические калькуляторы умеют работать с матрицами больших размеров. Введите количество строк, нажмите кнопку Enter, затем введите количество столбцов и еще раз нажмите кнопку Enter.

      Введите каждый элемент матрицы. На экране калькулятора отобразится матрица. Если ранее в калькулятор уже вводилась матрица, она появится на экране. Курсор выделит первый элемент матрицы. Введите значение первого элемента и нажмите Enter. Курсор автоматически переместится к следующему элементу матрицы.

    Исходной по формуле: A^-1 = A*/detA, где A* - присоединенная матрица, detA - исходной матрицы. Присоединенная матрица - это транспонированная матрица дополнений к элементам исходной матрицы.

    Первым делом найдите определитель матрицы, он должен быть отличен от нуля, так как дальше определитель будет использоваться в качестве делителя. Пусть для примера дана матрица третьего (состоящая из трех строк и трех столбцов). Как видно, определитель матрицы не равен нулю, поэтому существует обратная матрица.

    Найдите дополнения к каждому элементу матрицы A. Дополнением к A называется определитель подматрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца, причем этот определитель берется со знаком. Знак определяется умножением определителя на (-1) в степени i+j. Таким образом, например, дополнением к A будет определитель, рассмотренный на рисунке. Знак получился так: (-1)^(2+1) = -1.

    В результате вы получите матрицу дополнений, теперь транспонируйте ее. Транспонирование - это операция, симметричная относительно главной диагонали матрицы, столбцы и строки меняются местами. Таким образом, вы нашли присоединенную матрицу A*.