Где хранится эталон килограмма. Где хранится международный эталон килограмма

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН

ЕДИНИЦЫ МАССЫ (килограмм)


Эталонные весы с наибольшим пределом взвешивания 1 кг

Утвержден Постановлением Госстандарта СССР от 6.12.1984 г. № 4109, хранится во ВНИИМ им. Д.И.Менделеева. Эталон предназначен для воспроизведе­ния, хранения и передачи размера еди­ницы массы, получаемого на основании периодических сличений с Международ­ным прототипом килограмма. Основу эталона составляют копии № 12 и № 26 Международного прототипа кило­грамма, который хранится в Междуна­родном бюро мер и весов. Копии были изготовлены фирмой «Джонсон, Маттей и К 0 » из платино-иридиевого сплава в ви­де прямого круглого цилиндра с высотой, равной диаметру, подогнаны по массе и исследованы в МБМВ, переданы России в 1889 г

В составе эталона:

Национальный прототип килограмма - копия № 12 Международного прототипа килограмма;

Национальный прототип килограмма - копия № 26 Международного прототипа килограмма;

Эталонная гиря массой 1 кг и набор эта­лонных гирь массой от 1 до 500 г из пла- тино-иридиевого сплава;

Эталонные весы-компараторы с наи­большими пределами взвешивания 1 кг; 200, 25 и 3 г.

Область применения:

Метрологическое обеспечение единства измерений массы во всех областях науки и производственной деятельности: машиностроение, приборостроение, микроэлектроника, транспорт, оборонная промышленность, научные исследования, системы контроля и учета продукции, сельское хозяйство и др.

Современные эталоны - это, как правило, сложные аппаратурные комплексы. А эталон массы был и остается гирей - платиново-иридиевой "образца 1889 года" (именно тогда Международное бюро мер и весов изготовило 42 эталона килограмма). Сущность самой измерительной операции также осталась прежней и сводится к сравнению двух масс при взвешивании. Конечно, изобретены сверхчувствительные весы, растет точность взвешивания, благодаря которой появляются новые научные открытия (так, например, были открыты аргон и другие инертные газы).

Эту килограммовую гирю из платины и иридия сделала в 1889 году парижская ювелирная фирма по заказу Международного бюро мер и весов. Всего таких эталонов было изготовлено 42, а стран, подписавших тогда конвенцию о принятии метрической системы, - 17. По мере “подключения” к новой системе измерений других стран им вручали эталон килограмма.

Килограмм никак не связан ни с физическими константами, ни с какими-либо природными явлениями. Поэтому эталон берегут тщательнее: не дают пылинке на него сесть, ведь пылинка - это уже несколько делений на чувствительных весах. Международный прототип эталона достают из хранилища не чаще одного раза в пятнадцать лет, российский - раз в пять лет. Все работы ведутся со вторичными эталонами (только их допускается сравнивать с основным), от вторичного эталона значение массы передается рабочим эталонам, от них - к образцовым наборам гирь.
Эталонные весы во ВНИИМ им. Д. И. Менделеева установлены на специальном фундаменте в 700 тонн, не связанном со стенами здания, чтобы исключить влияние вибраций. Температура в помещении, где за сутки на весы устанавливаются две килограммовые гири, поддерживается с точностью до 0,01 о С, а все операции ведутся из соседней комнаты с помощью манипуляторов. Погрешность эталона массы России не превышает +0,002 мг.



Государственный первичный эталон единицы массы Государственный эталон единицы массы - килограмм - является самым древним из всех государственных эталонов, хотя в современном его составе он был утвержден в 1968 г. Размер килограмма был впервые задан при установлении метрической системы через размер его дольной единицы - грамма, определенного как масса дистиллированной воды при температуре таяния льда в объеме куба с ребром 1/100 метра. Позднее перешли к более удобному размеру единицы - килограмму, как массе воды в объеме кубического дециметра. В качестве нормальных условий была принята температура +4°С, при которой вода имеет наибольшую плотность. В 1889 г. по результатам тщательных измерений массы 1 дм3 воды во Франции был изготовлен первый прототип килограмма - платино-иридиевая гиря в виде цилиндра высотой 39 мм, равной ее диаметру, впоследствии названная архивным килограммом. Дальнейшие успехи точного взвешивания позволили установить, что масса архивного килограмма на 0,028 г больше массы 1 дм воды и что определить массу платинового килограмма можно в тысячу раз точнее, чем массу 1 дмводы. В 1878-83 гг. были изготовлены 43 новые килограммовые гири по образцу архивного килограмма из платиноиридиевого сплава. Одна из этих гирь, масса которой оказалась наиболее близкой к архивному килограмму, в 1899 г. на I ГКМВ была принята в качестве международного прототипа килограмма, который и определяет в настоящее время размер единицы массы для всех стран Метрической конвенции. Россия получила в 1889 году две копии (№12 и №26) международного килограмма. Первый Государственный эталон единицы массы в нашей стране был утвержден в 1918 г. Им являлся один из национальных прототипов, приобретенных Россией в 1889 г., - копия №12 международного прототипа килограмма. В МБМВ за 1883 -1889 гг. была произведена окончательная подгонка всех прототипов и их исследование. Вся процедура изготовления прототипа №12 и его исследования подробно изложена в сертификате МБМВ на этот прототип, согласно которому масса прототипа №12 на 1889 г. составляла1кг + (0,068± 0,002) мг. Все национальные прототипы каждые 25 - 35 лет должны сличаться в МБМВ с международным прототипом килограмма (или с его свидетелями). Передача размера килограмма (или его дольных частей) от прототипа №12 ко вторичным эталонам (эталонным гирям) до 1966 г. осуществлялась при помощи эталонных весов №1 с нагрузкой до 1 кг. Однако весы не входили тогда в состав Государственного эталона килограмма.Действующий в настоящее время Государственный первичный эталонединицы массы - килограмма утвержден в 1968 г. в составе следующих средств измерений: 1) копия №12 международного прототипа килограмма; 2) эталонные весы №1 и №2. Прототип №12 обеспечивает воспроизведение и хранение единицы массы национальном масштабе - масштабе всей страны. При этом используются сложные приемы бережливого хранения вещественного килограмма и ювелирная техника работы на эталоне. Даже при самом тщательном и осторожном применении прототипа неизбежно его взаимодействие с внешними объектами, неизбежен износ (изменение массы). Поэтому для его применения и хранения были выбраны особые правила и приемы, прежде всего - максимальное сокращение его перемещений и использование для передачи размера единицы нескольких эталонов-копий, сличение которых с прототипом №12 производится методом совокупных измерений. Для минимизации изменений массы прототипа он хранится на кварцевой пластинке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении. Годовое колебание температуры в помещении не превышает 2°С. Важным элементом Государственного первичного эталона килограмма являются эталонные весы, при помощи которых осуществляется передача размера единицы вторичным эталонам - эталонам-копиям массой в 1 кг. Сличения проводятся примерно 1 раз в 10 лет. Эталонные весы являются одним из наиболее точных измерительных устройств. Как и большинство высокоточных весов, эталонные весы №1 и №2 являются равноплечными призменными рычажными весами. Весы №2 имеют ряд преимуществ по сравнению с весами №1 в части конструкции и снабжены автоматическим регистрирующим устройством. Управление обоими "эталонными" весами производится дистанционно при помощи манипуляторов, которые позволяют освобождать коромысла весов (и перемещать в них гири) из другого помещения, с расстояния почти 4 м.Для уменьшения влияний температурных и воздушных колебаний в процессе измерений, а также попадании всевозможных пылинок, эталонные весы заключены в специальный стеклянный кожух. Специальное устройство позволяет измерять дистанционно температуру воздуха внутри весов с погрешностью 0,002°С. Использование методики, основанной на способе Гаусса, позволяет обеспечивать на государственном первичном эталоне воспроизведение единицы массы в 1 кг и передачу ее размера вторичным эталонам с СКО результата, не превышающим 0,007 мг при условии соблюдения установленных правил хранения и применения эталонов массы. Государственный первичный эталон единицы массы хранится и применяется во ВНИИМ им. Д. И. Менделеева. Опыт применения национальных прототипов килограмма из платиноиридиевого сплава на протяжении более 80 лет показал, что эти гири обладают высокой стабильностью массы; по исследованиям МБМВ эти гири обеспечат хранение единицы массы с погрешностью не более 10 -8 в течение нескольких столетий их применения. В настоящее время, однако, остается принципиальное несовершенство эталона, связанное с искусственным определением единицы массы. Стремясь заменить его естественным эталоном и получить гарантию определенной стабильности, ученые ведут поиски путей существенного повышения точности определения атомной единицы массы с тем, чтобы выразить килограмм через массу какой-либо элементарной частицы или атома. Германские ученые стремятся вывести единицу массы через трудоемкий подсчет количества атомов, содержащихся в килограммовом кристалле кремния. Речь идет об основном изотопе кремния - 28, отделением которого от прочих изотопов немецкие ученые занимаются совместно в сотрудничестве с российскими физиками-ядерщиками, разработавшими наиболее эффективные методы центрифужного получения высокообогащенных радиоактивных элементов. Американские ученые пошли по другому пути: их идея заключается в том, чтобы точно измерить в ваттах величину электромагнитной мощности, необходимой для уравновешивания эталонного килограмма (так называемый ваттовый баланс). Окончательное решение – какой из этих двух вариантов определения килограмма взять за основу – остается за Международным комитетом мер и весов.

Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом . Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике.

Энергия движений движ
Масса - килограмм (кг, kg) микрограмм (мкг) = 10 –9 кг миллиграмм (мг) = 10 –6 кг грамм (г) = 10 –3 кг центнер метрический (ц) = 100 кг тонна метрическая (т, тн) = 1000 кг
Сила - ньютон (Н, N) Размерность: Н = кг·м/с2 килоньютон (кН) = 1000 Н меганьютон (МН) = 106 Н
Энергия, работа, количество теплоты - джоуль (Дж, J) Размерность: Дж = Н·м = кг·м2/с2 килоджоуль (кДж) = 1000 Дж мегаджоуль (МДж) = 106 Дж
Масса (мера механической инертности тел, т.е. инерционности; мера взаимодействия тел с гравитационным полем) m килограмм (кг)
Сила (мера взаимодействия тел) F = m · a ньютон (Н = кг · м / с2)
Работа (мера воздействия на тело, вызывающего изменение его состояния, в механике - вызывающего перемещение под действием силы, внешней или внутренней) A = F · s
Энергия (мера способности тела совершить работу) E = A джоуль (Дж = Н · м) кг · м2 / с2
Кинетическая энергия E к = m · v 2 / 2
Потенциальная энергия в гравитационном поле E п = m · g · Δh, где g - ускорение свободного падения, Δh - разность высот, между которыми переместилось тело массой m.
Энергия Е физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие
Сила F векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нем деформаций
Джоуль J Работа, произведенная силой в 1 ньютон при перемещении ею тела на расстояние 1 метр в направлении действия

Механическая работа – физическая величина, равная произведению силы на путь, пройденный телом вдоль направления этой силы. Единица измерения работы – 1 джоуль (1 Дж = 1 Н·м).

Энергия тела – физическая величина, показывающая работу, которую может совершить это тело. Энергия измеряется теми же единицами, что и работа – джоулями.

Наверное, многие читатели помнят телевизионную рекламу одного сотового оператора, в которой появился знаменитый слоган "Скока вешать в граммах?" "Точность никогда не бывает лишней", - резюмировал свой вопрос один из героев ролика . На самом деле, он лукавил - точно отвесить, скажем, 200 граммов чего-либо невозможно. И дело не только в том, что существующие способы взвешивания плохи - просто у людей нет надежного эталона килограмма, а значит, и грамма.

Потребность в разработке стандартов, ориентируясь на которые можно определять значения массы, времени, длины и температуры (а после появления физики еще силы света, силы тока и единицы вещества) возникла у человечества давно. Потребность эта вполне объяснима - для того чтобы строить дороги и дома, путешествовать и торговать, необходимы были неизменные единицы, используя которые два строителя или торговца могли бы понимать, что нарисовано в чертежах друг друга и о каких количествах товара идет речь.

Свои собственные единицы измерения были у каждой цивилизации: например, в Древнем Египте массу измеряли в кантарах и киккарах, в Древней Греции - в талантах и драхмах, а на Руси - в пудах и золотниках. Как любят говорить ученые, при создании каждой из этих единиц люди как бы договаривались , что отныне масса, длина или температура чего-либо будут сравниваться с одной единицей массы, длины или температуры соответственно. Число тех, кто непосредственно участвовал в этих договоренностях, было очень невелико - у двух торговцев из разных концов страны пуды вполне могли отличаться на треть.

Как бы договоренности прекрасно работали до тех пор, пока люди не начали всерьез заниматься наукой и осваивать инженерное дело. Оказалось, что для описания законов природы или создания парового котла приближенных значений недостаточно, особенно если в работе принимают участие люди из разных стран. Осознав этот факт, ученые со всего мира занялись разработкой единых точных стандартов, или эталонов, для основных единиц измерения. 20 мая 1875 года во Франции было подписано соглашение об установлении этих единиц - Метрическая конвенция. Все страны, подписавшие этот документ, обязались использовать в качестве эталонов специально созданные стандарты. Для обеспечения государств-подписантов самыми точными эталонами была создана Международная палата мер и весов (или Международное бюро мер и весов). В задачи этой организации входит регулярное сравнение национальных эталонов между собой и курирование работ по созданию более точных способов измерения.

В России введение метрической системы связано с именем Дмитрия Ивановича Менделеева, создавшего в 1893 году Главную палату мер и весов и вообще немало сделавшего для развития метрологии. Свой интерес к точным измерениям он объяснял так: "Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры". Благодаря усилиям Менделеева, с первого января 1900 года в России наряду с национальными были разрешены к применению метрические меры.

После подписания Метрической конвенции специалисты занялись разработкой единых эталонов метра и килограмма (эти единицы измерения существовали и до 1875 года, однако эталонов, которые бы признавались во всем мире, не существовало). Эталон метра был установлен после знаменитой экспедиции по измерению длины дуги Парижского меридиана и представлял собой линейку из сплава платины и иридия в соотношении 9 к 1, длина которой равнялась одной сорокамиллионной части меридиана. По месту хранения его стали называть "метр архива" или "архивный метр". Эталон килограмма был отлит из того же сплава, и его масса соответствовала массе одного кубического дециметра (литра) чистой воды при температуре 4 градуса Цельсия (когда вода имеет максимальную плотность) и стандартном атмосферном давлении на уровне моря. В 1889 году в ходе первой Генеральной конференции по мерам и весам была принята система мер, основанная на только что изготовленных эталонах метра и килограмма, а также на эталоне секунды. Стандартом секунды стала считаться 1/86400 часть продолжительности средних солнечных суток (позже эталон привязали к тропическому году - секунду приравняли к 1/31556925,9747 его части). Страны, признавшие новую систему мер, получили копии этих эталонов, а прототипы отправились на хранение в Палату мер и весов.

Через некоторое время к этим трем эталонам добавились эталоны канделы (сила света), ампера (сила тока) и кельвина (температура). В 1960 году одиннадцатая Генеральная конференция по мерам и весам приняла систему мер и весов, основанную на использовании этих шести единиц и моля (единица количества вещества - его эталона не существует) - новая система получила название Международная система единиц, или СИ. Казалось бы, на этом история эталонов должна была завершиться, однако, в действительности, она только начиналась.

Все, что может испортиться…

По мере совершенствования технологий измерения стало ясно, что все хранящиеся в Париже эталоны не идеальны. Постепенно ученые приходили к мысли, что за стандарты основных единиц стоит брать не рукотворные предметы, а гораздо более совершенные образцы, уже созданные природой. Так, за стандарт секунды приняли интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0 кельвинов при отсутствии возмущения внешними полями, а за стандарт метра - расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. В отличие от старых, новые стандарты являются атомными или квантовыми, то есть в них "работают" самые "базовые" законы природы.

Постепенно шесть из семи основных единиц СИ получили способы воспроизведения, для которых не нужен уникальный эталон, хранящийся где-то в одном месте. Теоретически, любой ученый, который захочет точно (очень точно) узнать, например, сколько длится секунда, может взять миллиграмм-другой изотопа цезия-133 и отсчитать, когда произойдут 9192631770 периодов излучения (кстати, свои атомные стандарты времени установлены, например, на всех спутниках GPS). "В девушках" остался только килограмм - его эталон все еще пылится в глубоком подвале под Парижем.

Слово "пылится" в предыдущем абзаце вовсе не является стилистическим украшением - пыль на самом деле постепенно скапливается на эталоне килограмма, несмотря на все контрмеры. Достать платино-иридиевый цилиндр и протереть нельзя - во-первых, при извлечении на нем опять же осядет пыль, а во-вторых, протирка или даже обмахивание щеточкой неминуемо приведет к "отскакиванию" нескольких молекул. Иными словами, независимо от того, что делают или не делают с эталоном, его масса со временем изменяется. Долгое время считалось, что эти изменения незначительны, однако проведенная несколько лет назад проверка показала, что за последнее время эталон "похудел" на 50 микрограммов, а это уже внушительные потери.

Моль, кремний и золото

Возможный выход из этого печального положения (за какой-нибудь миллиард лет эталон станет легче на треть) предложили в 2007 году два американских ученых из Технологического института Джорджии. Вместо переменчивого цилиндра они предложили считать стандартом массы куб из углерода, который будет содержать строго определенное количество атомов. Так как масса каждого отдельного атома постоянна, то и масса их совокупности также не будет меняться. Исследователи рассчитали, что куб массой ровно один килограмм будет состоять из 2250 х 28148963 3 атомов (50184513538686668007780750 атомов), а его грань составит 8,11 сантиметра. За три года ученые уточнили некоторые детали и представили свои соображения в статье, препринт которой можно найти на сайте arXiv.org.

Американские физики озаботились проблемой стандарта килограмма и выбрали в качестве "эталонного" элемента углерод неспроста - до этого они занимались уточнением числа Авогадро - одной из фундаментальных констант, определяющей, сколько атомов содержится в одном моле любого вещества. Хотя это число и является одним из самых главных в химии, его точного значения не существует (в числе прочих вопросов ученые, например, решали, четное оно или нет). Число Авогадро подобрано так, чтобы масса моля в граммах равнялась массе молекулы (атома) в атомных единицах массы. Атом углерода имеет массу 12 атомных единиц массы, а значит, масса моля углерода должна составлять12 граммов. Уточнив число Авогадро и приняв его равным 84446886 3 (602214098282748740154456), исследователи смогли рассчитать необходимое число атомов углерода в эталоне.

Не исключено, что новая работа будет рассмотрена на очередной Генеральной конференции по мерам и весам, которая пройдет в 2011 году. Однако у ученых из Джорджии есть конкуренты. Например, в Вашингтонском национальном институте стандартов и технологии очень активно работают над концепцией электронного килограмма. Вкратце суть предлагаемого ими метода такова: эталон определяется через силу тока, которая необходима для создания магнитного поля, способного уравновесить груз в один килограмм. Этот способ очень хорош, так как позволяет добиться высокой точности (он основан на использовании еще одной фундаментальной константы - постоянной Планка), однако сам эксперимент чрезвычайно сложен.

Еще один вариант нового эталона – кремниевая сфера, параметры которой рассчитаны таким образом, что она будет содержать строго определенное количество атомов (этот расчет можно провести, так как ученым известно расстояние между отдельными атомами, а сам процесс производства чистого кремния очень хорошо налажен). Такая сфера даже была создана, но с ней немедленно возникли сложности, напоминающие сложности нынешнего эталона - со временем сфера теряет часть своих атомов и, кроме того, на ней образуется пленка оксида кремния.

Третий подход к созданию эталона предполагает, что он будет каждый раз производиться de novo . Для получения стандарта массы необходимо накапливать ионы висмута и золота до тех пор, пока их суммарный заряд не достигнет определенного значения. Этот метод уже признали неудовлетворительным: он требует слишком много времени, а результаты плохо воспроизводятся. Вообще, с высокой вероятностью, все описанные способы получения нового эталона килограмма, кроме способа, основанного на использовании числа Авогадро, останутся только в памяти историков науки, так как в отличие от остальных, эталон килограмм в виде куба из изотопа углерода-12 основан на прямом использовании одного из фундаментальных атомных понятий.

Пока неясно, станет ли углеродный эталон общепризнанным или же ученые придумают новый, более удобный способ. Но тот факт, что хранящийся в Париже цилиндр, верой и правдой служивший людям 120 лет, скоро отправится на пенсию, сомнений не вызывает.

Федеральное агентство по образованию

Государственное общеобразовательное учреждение высшего профессионального образования

СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Приборостроение и телекоммуникации»

РЕФЕРАТ

ЭТАЛОН ДЛИНЫ И МАССЫ

Выполнил:

ст-т гр. Р 54-2

А. Е. Шамова

Проверил:

преподаватель

Красноярск 2007

Эталоном называется средство измерений (комплекс средств измерений), предназначенное для воспроизведения и хранения единицы величины и передачи ее размера другим, менее точным, средствам измерения.

Международные эталоны хранятся в Международном Бюро Мер и Весов, расположенном в Севре – пригороде Парижа. В соответствии с международными соглашениями с их помощью периодически проводятся сличения национальных эталонов разных стран, в том числе взаимные сличения национальных эталонов. Например, национальные эталоны метра и килограмма сличаются один раз в 20-25 лет, а эталоны вольта и Ома – раз в три года.

Эталон единицы длины.

В 1971 г. Национальное собрание Франции приняло длину десятимиллионной части четверти дуги парижского меридиана в качестве единицы длины – метра. В тот период времени во Франции применялся в качестве единицы длины туаз. Соотношение между метром и туазом оказалось равным 1 м = 0,513074 туаза .

Но уже в 1837 г. Французские ученые установили, что в четверти меридиана содержится не 10 млн., а 10 млн. 856 м. Примерно в тот же период времени стало очевидным, что форма и размеры Земли со временем изменяются. Поэтому в 1872 г. по инициативе Петербургской академии наук была создана международная комиссия, решившая не создавать уточненных эталонов метра, а принять в качестве исходной единицы длины метр Архива Франции.

В 1889 г. Был изготовлен 31 эталон метра в виде платиноиридиевого стержня Х-образного поперечного сечения, который, как следует из рассмотрения Рис. 1 вписывается в квадрат .

Длина линейки составляет 102 см. На каждом из ее концов нанесены три штриха на расстоянии 0,5 мм друг от друга. Таким образом, расстояние между средними штрихами равно 1 м.

Погрешность платиноиридиевых штриховых метров составляет. Уже в начале 20 в. эта погрешность оказалась достаточно большой, не удовлетворяющей требованиям измерений длины.

В 1960 г. XI Генеральной конференцией по мерам и весам было принято новое определение метра: метр – длина, равная 1650763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями
и
атома криптона-86.

Криптоновый эталон метра состоит из газоразрядной лампы, наполненной криптоном-86, помещенной в сосуд Дюара с жидким азотом (Рис. 2 ). При подаче электрического напряжения +1500 в лампе образуется свечение возбужденных атомов криптона-86. Капилляр, в котором происходит свечение (с внутренним диаметром около 3 мм), имеет оптический выход на автоматический интерференционный фотоэлектрический компаратор. С помощью интерференционного компаратора определяется расстояние между штрихами, что позволяет найти число длин волн, укладывающихся между средними штрихами линейки (Рис. 1 ). Фактически определяется не все количество длин волн, «помещающихся» в метре, а оценивается разница между измеряемой длиной и эталонной длиной, воспроизводимой газоразрядной лампой. Измерение длины волны и энергетических характеристик свечения производится с помощью спектроинтерферометров.

Погрешность воспроизведения метра, оцениваемая средним квадратическим отклонением результата измерения, с помощью данного эталона существенно уменьшилась по сравнению с погрешностью платиноиридиевого прототипа метра и составила
.

Новый эталон метра.

Повышение точности эталона длины стало реальным при получении возможности распространения абсолютных измерений частоты (в радиочастотном спектре колебаний) на оптический диапазон и разработке высокостабильных лазеров, что позволило уточнить значение скорости света. В 1983 г. XVII Генеральная конференция по мерам и весам приняла новое опреде­ление метра: «Метр - длина пути, проходимого в вакууме светом за 1/299792458 доли секунды (точно)». Данное определение метра принципиально отличается от определения 1960 г.: «криптоновый» метр не был непосредственно связан со временем, новый метр опирается на эталон единицы времени - секунду и известное значение скорости света.

Еще многие годы метрология и техника будут использовать значение скорости света, установленное XVII Ге­неральной конференцией по мерам и весам.

В настоящее время для обеспечения высокой степени стабилизации важ­нейшего параметра лазерного излучения – частоты, широко применяются ге­лий-неоновые лазеры на длине волны излучения
мкм (инфракрасная область спектра) и
мкм (видимая область спектра), стабилизирован­ные соответственно по насыщенному поглощению в метане (Не-Ne/CH 4 ) и молекулярном йоде (Не-Ne/I 2 ).

Лазеры на основе (Не-Ne/CH 4 ) по воспроизводимости частоты прибли­жаются к цезиевому стандарту, являющемуся основой эталона времени и час­тоты. Работающий в видимом диапазоне спектра Не-Ne/I 2 лазер позволяет реализовать новое определение метра через скорость распростране­ния света в вакууме. Наличие излучения на двух длинах волн ( мкм и мкм) дает возможность с помощью интерферометра обеспечить высо­кую точность измерений. Секунда воспроизводит­ся с помощью цезиевых стандартов частоты в СВЧ диапазоне электромагнит­ных колебаний, а новый метр – в оптическом диапазоне частот, т. е. на несколько порядков выше частот, применяемых в эталоне времени и частоты. Таким образом, необходим «мост», служащий для передачи эталонной частоты цезиевого стандарта в оптическую часть диапазона.

Комплекс аппаратуры для «переноса» измерений частоты в «радиочастотном» эталоне времени на изме­рения частоты высокостабильных лазеров (в оптическом диапазоне) был наз­ван радиооптическим частотным мостом (РОЧМ). РОЧМ позволил по­лучить наивысшую точность измерения скорости света в вакууме и рассматри­вать ее как фундаментальную физическую константу, явился основой создания единого эталона частоты – времени - длины. В этот эталон входят эталон време­ни и частоты, аппаратура РОЧМ, а также новый эталон метра, включающий Не-Ne лазеры, интерферометр сравнения длин волн Не-Ne/CH 4 лазеров и Не-Ne/I 2 лазеров, интерферометр, непосредственно формирующий единицу длины - метр. Этот эталон имеет погрешность воспроизведения в виде средне­го квадратического отклонения результата измерений около , система­тическая составляющая не превышает , т. е. более чем на три порядка меньше погрешности воспроизведения метра с помощью «криптонового» мет­ра.

Эталон единицы массы.

Международный прототип килограмма был утвержден на I Генеральной конференции по мерам и весам в 1889 г. как прототип единицы массы, хотя в тот период еще не существовало четкое разграничение понятий массы и веса, и поэтому часто эталон массы называли эталоном веса.

В состав эталона входят:

Копия международного прототипа килограмма (№ 12), представляющая собой платиноиридиевую гирю в виде прямого цилиндра с закругленными реб­рами диаметром и высотой 39 мм. Прототип килограмма хранится во ВНИИМ им. Д. И. Менделеева (г. Санкт -Петербург) на кварцевой подставке под двумя стеклянными колпаками в стальном сейфе. Эталон хранится при поддержании температуры воздуха в пределах (20±3)°С и относительной влажности 65 %. С целью сохранения эталона с ним сличают два вторичных эталона раз в 10 лет. Они и используются для дальнейшей передачи размера килограмма;

Равноплечие призменные весы на 1 кг № 1 с дистанционным управлением (с целью исключения влияния оператора на температуру окружающей среды), изготовленные фирмой «Рупрехт», и равноплечие современные весы на 1 кг № 2, изготовленные во ВНИИМ им. Д. И. Менделеева. Весы № 1 и № 2 служат для передачи размера единицы массы от прототипа № 12 вторич­ным эталонам.

На Рис. 3 показан эталон килограмма в современном виде. Справа на рисунке представлено вместе с прототипом килограмма № 12 двухконтурное стеклянное защитное устройство.

Погрешность воспроизведения килограмма, вы­раженная средним квадратическим отклонением результата измерений, составляет
.

Со времени создания прототипов килограмма прошло более 100 лет. За истекший период периодически сличали национальные эталоны с международным эталоном. В Табл. 1 приведены результаты лишь двух сличений (они были и позже 1954 г.) эталонов килограмма.

Таблица 1

Новый эталон килограмма

Недавно выяснилось, что Парижский эталон килограмма не совсем точен. Решить эту проблему, т.е. создать новый эталон массы, поможет программа, в которой участвуют ученые из восьми стран. Первые 140 граммов вещества для нового эталона уже существуют. Это сверхчистый кремний, на 99,99% состоящий из изотопа кремния-28.

Через три года такого кремния будет уже 5 кг. Этого хватит, чтобы сделать килограммовый шар, число атомов кремния-28 в котором будет точно известно. И тогда допотопную гирю в парижской Палате мер и весов заменит эталон, не только масса, но и число атомов в котором будут определены с предельной для сегодняшней мировой науки точностью.

Получить новый, действительно точный эталон массы ученые, а особенно физики, мечтали давно. Часть работы выполнена, но впереди еще огромный объем. Дело в том, что в микроэлектронике химически чистый кремний получать в основном научились. Но природный кремний состоит из трех изотопов с разной, естественно, массой атомов - 28 (92%), 29 (5%) и 30 (3%) углеродных единиц. А для эталона массы атомы нужны только одинаковые. Только после получения в России изотопически-чистого кремния в Австралии сделают идеальный гладкий шар. И потом шар будут долго и тщательно проверять в Германии и Франции. Таким образом, впервые появляется возможность уточнить одну из самых фундаментальных химических величин - число Авогадро.

Эталон килограмма, хранящийся в Париже
– единица массы в Международной системе единиц (СИ) и некоторых других метрических системах. По определению один килограмм равен массе международного прототипа килограмма. Килограмм входит в семи основных единиц СИ, через которые определяется много других единиц. Это единственная одниця СИ с префиксом. Единица без префикса – грамм – равен одной тысячной килограмма.
Килограмм является единицей массы, а не веса, хотя в посякденному потребления понятие массы и веса часто путают. Единицей силы, а вес – это сила, с которой тело действует на опору или подвес, в системе СИ является ньютон. Раньше, до 1960, использовалась единица килограмм-сила. Ее можно встретить в старой физической литературе, и в некоторых технических областях, однако в физике использования этой единицы не рекомендуется как устаревшей.
Поскольку масса прототипа килограмма меняется со временем, а точное определение основной единицы СИ важно для точных измерений многих физических величин, Международный комитет мер и весов принял в 2005 решение о необходимости переопределения килограмма через фундаментальные физические постоянные. Однако, окончательное решение по этому поводу ожидается не ранее 2015.
Килограмм как единица массы был предложен после Великой французской революции с целью упорядочения системы единиц с применением десятичной системы. 7 апреля 1795 была провозглашена новую единицу грамм, как «абсолютный вес объема воды, равном кубу одной сотой части метра при температуре плавления льда». Килограмм при этом определении был производной единицей, равной тысяче граммов. Ввиду того, что стандарт в виде определенного количества воды был бы ненадежным, возникла проблема его практической реализации. Был изготовлен временный металлический эталон, с весом в 1000 граммов. Вместе была поставлена задача точного измерения массы одного дециметра кубического, т.е. литра, воды.
После нескольких лет исследований французский химик Луи Лефевр-женск и итальянский естествоиспытатель Джованни Фабброни сделали вывод, что точное определение будет не при температуре плавления льда, 0 ° C а при температуре, при которой плотность воды наибольшая – 4 ° C. Определена масса составляла 99.9265% временного эталона. В 1799 был изготовлен платиновый эталон, масса которого соответствовала массе воды при 4 ° C. Этот килограмм получил название килограмма архива и служил эталоном течение следующих 90 лет.
Современным эталоном килограмма является цилиндрическая гиря высотой и диаметром 39 миллиметров, что хранится в Международном бюро мер и весов в Севре (пригород Парижа, Франция). Эта гиря отлитая в 1879 году из сплава платины (90%) и иридия (10%), впервые приготовленного французским химиком Сент-Клер Девиль в 1872 году. Прототип был утвержден первый Генеральной конференцией мер и весов в 1889 году.
В 1875 году 17 стран мира подписана Метрическая конвенция, которая положила начало процесс создания международной системы единиц. Международный прототип килограмма был изготовлен как результат этой договоренности. Благодаря использованию сплава платины и иридия увеличилась жесткость образца. Кроме самого прототипа в Международном бюро мер и весов сохраняется еще шесть его копий. Примерно 80 копий этого эталона также хранятся в других странах.
Когда килограмм был утвержден в качестве единицы еще не было четкого понимания разницы между массой и весом. Масса – характеристика инерционных свойств тел. Вес – это сила, с которой тело действует на опору или подвес. Значение массы тела одинаково в любой точке Земли, тогда как вес зависит от силы тяжести, то есть разная в разных точках Земли, зависит от географической широты и долготы, высоты над уровнем моря и даже от пород, залегающих под поверхностью в конкретном месте.
С целью устранения путаницы, существовавшей в то время, 1-я Генеральная конференция по мерам и весам (1889) утвердила международный прототип килограмма как прототип единицы массы. В решениях 3-й Генеральной конфереции мер и весов четко разграничены килограмм за единицу силы и килограмм как единицу массы.
Существует также отдельное фундаментальное физическое вопрос о равенстве инерционной и гравитационной масс, но в контексте определения эталона килограмма не существенное.
Изменение массы национальных прототипов килограмма K21-K40 и сестринских копий K32 и K8 (41) со временем относительно международного прототипа. Все измерения представлены как относительные. Измерений массы, которые свидетельствовали бы о том, какой из прототипов найстабильшиший о природных инвариантов нет. Существует возможность, что все прототипы увеличили свою массу за 100 лет, а K21, K35, K40 и международный прототип набрали меньшую массу, чем другие. Точность воспроизведения единицы массы – килограмма – с помощью прототипа килограмма (относительная погрешность не превышает 2.10 -8) в основном удовлетворяет запросы современной науки и техники. Однако перспективы их развития требуют дальнейшего повышения точности воспроизведения единиц массы. Кроме того, зруйновнисть и невидтворюванисть международного прототипа килограмма оставляет в центре внимания метрологов проблему установления естественной меры для килограмма.
В результате последнего (на 2005 год) сопоставление копий и эталона килограмма было выявлено, что общий эталон (который находится в Париже) потяжелел на 28 микрограммов. Учитывая это, а также для установления более стабильного эталона массы, сейчас предложено несколько вариантов замены эталона килограмма на надежный (например, нанеся количество атомов в кристалле какого-либо химического элемента, или выразив через единицы энергии, расходуемых при переходах между электронными уровнями, или с помощью так называемых "обратных ампер-весов"). Но до сих пор альтернативные определения килограмма не приняты.
Другое направление решения этой проблемы заключается в разработке и создании образцов массы одноизотопного состава. Проведенные исследования показывают реальную возможность воспроизведения единицы массы с точностью, намного превышает любые практические запросы.