Объем параллелепипеда. Формулы для нахождения объема параллелепипеда Параллелепипеда равен произведению измерений

Фигуры на рисунке 175, а и б состоят из равного количества одинаковых кубиков. О таких фигурах можно сказать, что их объемы равны. Прямоугольные параллелепипеды, изображенные на рисунке 175, в и г, состоят соответственно из 18 и 9 одинаковых кубиков. Поэтому можно сказать, что объем первого из них в два раза больше объема второго.

С такой величиной, как объем, вы часто встречаетесь в повседневной жизни: объем топливного бака, объем бассейна, объем классной комнаты, показатели потребления газа или воды на счетчиках и т.д.

Опыт подсказывает вам, что одинаковые емкости имеют равные объемы. Например, одинаковые бочки имеют равные объемы.

Если емкость разделить на несколько частей, то объем всей емкости равен сумме объемов ее частей. Например, объем двухкамерного холодильника равен сумме объемов его камер.

Эти примеры иллюстрируют следующие свойства объема фигуры .

1 ) Равные фигуры имеют равные объемы.

2 ) Объем фигуры равен сумме объемов фигур, из которых она состоит.

Как и в случаях с другими величинами (длина, площадь), следует ввести единицу измерения объема.

За единицу измерения объема выбираю куб, ребро которого равно единичному отрезку. Такой куб называют единичным .

кубическим миллиметром . Пишут 1 мм 3 .

Объем куба с ребром 1 см называю кубическим сантиметром . Пишут 1 см 3 .

Объем куба с ребром 1 мм называю кубическим дециметром . Пишут 1 дм 3 .

При измерении объемов жидкостей и газов 1 дм 3 называют литром . Пишут: 1 л. Итак, 1 л = 1 дм 3 .

Если объем красного кубика (см. рис. 175, д) принять за единицу, то объемы фигур на рисунке 175, а, б, в и г соответственно равны 5, 5, 18 и 9 кубических единиц.

Если длина, ширина и высота прямоугольного параллелепипеда соответственно равны 5 см, 6 см, 4 см, то этот параллелепипед можно разделить на 5 * 6 * 4 единичных кубов (рис. 176 ). Поэтому его объем равен 5 * 6 * 4 = 120 см 3 .

Объем прямоугольного параллелепипеда равен произведению трех его измерений.

V = abc

где V − объем, a, b, и c − измерения прямоугольного параллелепипеда, выраженные в одних и тех же единицах.

Поскольку у куба все ребра равны, то его объем вычисляют по формуле:

V = a 3

где a − длина ребра куба. Именно поэтому третью степень числа называют кубом числа.

Произведение длины a и ширины b прямоугольного параллелепипеда равно площади S его основания: S = ab (рис. 177 ). Обозначим высоту прямоугольного параллелепипеда буквой h. Тогда объем V прямоугольного параллелепипеда равен V = abh .

V = abh = (ab)h = Sh .

Итак, мы получили еще одну формулу для вычисления объема прямоугольного параллелепипеда:

V = Sh

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Пример. Какой должна быть высота бака, имеющего форму прямоугольного параллелепипеда, чтобы его объем составлял 324 дм 3 , а площадь дна − 54 дм 2 ?

Решение. Из формулы V = Sh следует, что h = V: S. Тогда искомую высоту h бака можно вычислить так:

h = 324 : 54 = 6 (дм).

Ответ: 6 дм.

Любое геометрическое тело можно охарактеризовать площадью (S) поверхности и объемом (V). Площадь и объем совсем не одно и то же. Объект может иметь сравнительно небольшой V и большую S, например, так устроен мозг человека. Вычислить данные показатели для простых геометрических фигур гораздо проще.

Параллелепипед: определение, виды и свойства

Параллелепипед – это четырехугольная призма, в основании которой находится параллелограмм. Для чего же может потребоваться формула нахождения объема фигуры? Подобную форму имеют книги, упаковочные коробки и еще множество вещей из повседневной жизни. Комнаты в жилых и офисных домах, как правило, являются прямоугольными параллелепипедами. Для установки вентиляции, кондиционеров и определение количества обогревательных элементов в комнате необходимо рассчитать объем помещения.

У фигуры 6 граней – параллелограммов и 12 ребер, две произвольно выбранные грани называют основаниями. Параллелепипед может быть нескольких видов. Различия обусловлены углами между смежными ребрами. Формулы для нахождения V-ов различных многоугольников немного отличаются.

Если 6 граней геометрической фигуры представляют собой прямоугольники, то ее тоже называют прямоугольной. Куб – это частный случай параллелепипеда, в котором все 6 граней представляют собой равные квадраты. В этом случае, чтобы найти V, нужно узнать длину только одной стороны и возвести ее в третью степень.

Для решения задач понадобятся знания не только готовых формул, но свойств фигуры. Перечень основных свойств прямоугольной призмы невелик и очень прост для понимания:

  1. Противолежащие грани фигуры равны и параллельны. Это значит, что ребра расположенные напротив одинаковы по длине и углу наклона.
  2. Все боковые грани прямого параллелепипеда – прямоугольники.
  3. Четыре главные диагонали геометрической фигуры пересекаются в одной точкой, и делятся ею пополам.
  4. Квадрат диагонали параллелепипеда равен суме квадратов измерений фигуры (следует из теоремы Пифагора).

Теорема Пифагора гласит, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади треугольника, построенного на гипотенузе того же треугольника.

Доказательство последнего свойства можно разобрать на изображении представленном ниже. Ход решения поставленной задачи прост и не требует подробных объяснений.

Формула объема прямоугольного параллелепипеда

Формула нахождения для всех видов геометрической фигуры одна: V=S*h, где V- искомый объем, S – площадь основания параллелепипеда, h – высота, опущенная из противоположной вершины и перпендикулярная основанию. В прямоугольнике h совпадает с одной из сторон фигуры, поэтому чтобы найти объем прямоугольной призмы необходимо перемножить три измерения.

Объем принято выражать в см3. Зная все три значения a, b и c найти объем фигуры совсем не сложно. Наиболее часто встречающийся тип задач в ЕГЭ – это поиск объема или диагонали параллелепипеда. Решить многие типовые задания ЕГЭ без формулы объема прямоугольника – невозможно. Пример задания и оформления его решения приведен на рисунке ниже.

Примечание 1 . Площадь поверхности прямоугольной призмы можно найти, если умножить на 2 сумму площадей трех граней фигуры: основания (ab) и двух смежных боковых граней (bc + ac).

Примечание 2 . Площадь поверхности боковых граней легко узнать умножив периметр основания на высоту параллелепипеда.

Исходя из первого свойства параллелепипедов AB = A1B1, а грань B1D1 = BD. Согласно следствиям из теоремы Пифагора сумма всех углов в прямоугольном треугольнике равна 180°, а катет, лежащий против угла в 30°, равен гипотенузы. Применив данные знания для треугольника, легко находим длину сторон AB и AD. Затем перемножаем полученные значения и вычисляем объем параллелепипеда.

Формула для нахождения объема наклонного параллелепипеда

Чтобы найти объем наклонного параллелепипеда необходимо площадь основания фигуры умножить на высоту, опущенную на данное основание из противоположного угла.

Таким образом, искомый V можно представить в виде h — количества листов с площадью S основания, так объем колоды складывается из V-ов всех карт.

Примеры решения задач

Задания единого экзамена должны быть выполнены за определенное время. Типовые задачи, как правило, не содержать большого количества вычислений и сложных дробей. Часто школьнику предлагают как найти объем неправильной геометрической фигуры. В таких случаях следует помнить простое правило, что общий объем равен сумме V-ов составных частей.

Как видно из примера на изображении выше, ничего сложного в решении подобных задач нет. Задания из более сложных разделов предполагают знания теоремы Пифагора и ее следствий, а так же формулу длины диагонали фигуры. Для успешного решения заданий тестов достаточно заранее ознакомится с образцами типовых задач.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

С пятого класса нам известна формула нахождения объема прямоугольного параллелепипеда. Сегодня мы вспомним эту формулу и докажем теорему «Объем прямоугольного параллелепипеда»

Докажем теорему: Объем прямоугольного параллелепипеда равен произведению трех его измерений.

Дано: параллелепипед

а, b, c — его измерения.

V - объем параллелепипеда.

Доказать: V = abc.

Доказательство:

1. Пусть а, b, c - конечные десятичные дроби, где число знаков после запятой не больше n (n > 1).

Тогда Числа а. 10n , b . 10n, c . 10n - целые.

Разобьем каждое ребро параллелепипеда на равные отрезки длиной и через точки разбиения проведем плоскости, перпендикулярные ребрам.

Параллелепипед разобьется на abc.103n равных кубиков с ребром. Найдем объем каждого маленького кубика будет равен равно единица, деленная на десять в n-ой степени, возведенная в куб. Возведя числитель и знаменатель в куб, получаем (единица в кубе равна единице, а 10 в n-ой степени в кубе равно 10 в степени 3n) частное единицы и 10 в степени 3n.

Т.к. объем каждого такого кубика равен, а количество этих кубиков аbс умноженное на, то объем прямоугольного параллелепипеда находим умножением количества кубиков на объем маленького кубика Тогда получаем выражение: объем прямоугольного параллелепипеда равен произведению аbс, умноженное на 10 в степени 3n частное единицы и 10 в степени 3n.

Сократим на 10 в степени 3n, получим, что объем прямоугольного параллелепипеда равен abc или произведению трех его измерений.

Итак, V = abc.

2.Докажем, если хотя бы одно из измерений a, b, c - бесконечная десятичная дробь, то объем параллелепипеда также равен произведению трех его измерений.

Пусть аn, bn, cn - конечные десятичные дроби, полученные из чисел a, b, c отбрасыванием в каждом из них всех цифр после запятой, начиная с (n + 1). Тогда а больше или равно а с индексом и меньше или равно а с индексом n штрих

an < a < an",

где а энное штрих равно сумме а энное и единицы, деленной на десять в n-ой степени =

для b и c, запишем аналогичные неравенства и запишем их друг под другом

an < a < an"

bn < b < bn"

cn < c < cn",

Перемножим эти три неравенства, мы получим: произведение abc больше или равно произведению а энного на b энное и на c энное и меньше или равно а энному штрих на b энное штрих и на c энное штрих:

anbncn abc < an"bn"cn". (1)

По доказанному в п. 1., левая часть - объем параллелепипеда со сторонами anbncn , то есть Vn, а правая — объем параллелепипеда со сторонами an"bn"cn", то есть Vn".

Т.к. параллелепипед Р, то есть параллелепипед с измерениями a, b, c содержит в себе параллелепипед Рn, то есть параллелепипед со сторонами an, bn, cn, а сам содержится в параллелепипеде Pn", то есть в параллелепипеде со сторонами an", bn", cn" то объем V параллелепипеда Р заключен между Vn = anbncn и Vn "= an"bn"cn",

т.е. anbncn < V < an"bn"cn". (2)

При неограниченном увеличении n число частное единицы и 10 в степени 3n будет становиться сколь угодно малым, и потому числа anbncn и an"bn"cn" будут сколь угодно мало отличаться друг от друга. Следовательно, число V сколь угодно мало отличается от числа abc. Значит, они равны:

V = abc. Теорема доказана.

Следствие 1. Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Основанием прямоугольного параллелепипеда является прямоугольник. Пусть длина прямоугольника равна а и ширина равна b, высоту обозначим h=c. Тогда площадь прямоугольника ищем по формуле. Подставим в формулу для нахождения объема V = abc вместо произведения пишем. Получаем формулу

Следствие 2. Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

Дана прямоугольная призма, угол А в основании является прямым. Достроим прямоугольную призму до прямоугольного параллелепипеда (смотрите чертеж). Прямоугольный параллелепипед состоит из двух прямоугольных призм, которые равны, так как имеют равные основания и высоты. Соответственно, площадь прямоугольника равна двум площадям прямоугольных треугольников АВС Следовательно, объем прямоугольной призмы равен половине объема прямоугольного параллелепипеда (при умножении) или произведению основания прямоугольного треугольника на высоту.

Задача 1.Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем прямоугольного параллелепипеда ищем по формуле:

Данная фигура состоит из двух прямоугольных параллелепипедов.

Пусть — это объем полного параллелепипеда с измерениями 4, 3, 3. Тогда это объем малого «вырезанного» параллелепипеда с измерениями 3, 1, 1.

Чтобы найти объем многогранника, необходимо найти разность объемов V1 и V2

Находим объем V1 как произведение его измерений обозначим их а1, b1, c1, получаем объем его равен

Для малого «вырезанного» параллелепипеда объем V2 равен произведению его измерений, их обозначим как а2, b2, c2 , тогда получим

Теперь найдем объем многогранника V как разность V1 и V2, получим V=

Ответ: V многогранника равен 33

ОБЪЕМ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. имеет место формула

Упражнение 1 Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите объем параллелепипеда. Ответ: 6.

Упражнение 2 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 3. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Ответ: 1, 5.

Упражнение 3 Площадь грани прямоугольного параллелепипеда равна 2. Ребро, перпендикулярное этой грани, равно 3. Найдите объем параллелепипеда. Ответ: 6.

Упражнение 4 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Диагональ параллелепипеда равна 3. Найдите объем параллелепипеда. Ответ: 4.

Упражнение 6 Во сколько раз увеличится объем куба, если его ребро увеличить в два раза? Ответ: В 8 раз.

Упражнение 9 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 10. Найдите объем параллелепипеда. Ответ: 2.

Упражнение 10 Ребро прямоугольного параллелепипеда равно 1. Диагональ равна 3. Площадь поверхности параллелепипеда равна 16. Найдите объем параллелепипеда. Ответ: 4.

Упражнение 12 Площади трех граней прямоугольного параллелепипеда равны 1, 2, 3. Найдите объем параллелепипеда. Объем параллелепипеда равен Ответ:

Упражнение 19 Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда. Решение: Ребра параллелепипеда равны 2, 2 и 1. Его объем равен 4.

Упражнение 20 Параллелепипед описан около единичной сферы. Найдите его объем. Решение: Ребра параллелепипеда равны 2. Его объем равен 8.

Упражнение 21 Найдите объем куба, вписанного в единичный октаэдр. Решение: Ребро куба равно Объем куба равен

Упражнение 22 Найдите объем куба, описанного около единичного октаэдра. Решение: Ребро куба равно Объем куба равен

Упражнение 23 Найдите объем куба, вписанного в единичный додекаэдр. Решение: Ребро куба равно Объем куба равен

Упражнение 24 Могут ли площади всех граней параллелепипеда быть меньше 1, а объем параллелепипеда быть больше 100? Ответ: Нет, объем будет меньше 1.

Упражнение 25 Могут ли площади всех граней параллелепипеда быть больше 100, а объем параллелепипеда быть меньше 1? Ответ: Да.

Упражнение 27 Четыре грани параллелепипеда – прямоугольники со сторонами 1 и 2. Какой наибольший объем может иметь этот параллелепипед? Решение. Искомым параллелепипедом является прямоугольный параллелепипед, у которого две оставшиеся грани – квадраты со стороной 2. Его объем равен 4. Ответ: 4.

Какой наибольший объем может иметь параллелепипед, вписанный в прямой цилиндр, радиус основания и высота которого равны 1? Ответ: 2.