Перемещение воздушных масс над землей. Циркуляция атмосферы

10. Воздушные массы

10.5. Трансформация воздушных масс

При изменении циркуляционных условий воздушная масса как единое целое смещается из очага своего формирования в соседние районы, взаимодействуя с другими воздушными массами.

При перемещении воздушная масса начинает изменять свои свойства – они уже будут зависеть не только от свойств очага формирования, но и от свойств соседних воздушных масс, от свойств подстилающей поверхности, над которой проходит воздушная масса, а также от длительности времени, прошедшего с момента образования воздушной массы.

Эти влияния могут вызвать изменения в содержании влаги в воздухе, а также изменение температуры воздуха в результате высвобождения скрытой теплоты или теплообмена с подстилающей поверхностью.

i Процесс изменения свойств воздушной массы называется трансформацией или

эволюцией.

Трансформация, связанная с движением воздушной массы, называется динамической. Скорости перемещения воздушной массы на разных высотах будут различными, наличие сдвига скоростей вызывает турбулентное перемешивание. Если нижние слои воздуха нагреваются, то возникает неустойчивость и развивается конвективное перемешивание.

Обычно процесс трансформации воздушной массы продолжается от 3 до 7 суток. Признаком его окончания является прекращение изменений температуры воздуха день ото дня как вблизи земной поверхности, так и на высотах – т.е. достижение температуры равновесия.

i Температура равновесия характеризует температуру, свойственную данному

району в данное время года.

Процесс достижения температуры равновесия можно рассматривать, как процесс формирования новой воздушной массы.

Особенно интенсивно протекает трансформация воздушных масс при смене подстилающей поверхности, например, при смещении воздушной массы с суши на море.

Ярким примером может служить трансформация континентального умеренного воздуха над Японским морем зимой.

10. Воздушные массы

При перемещении континентального умеренного воздуха над Японским морем он трансформируется в воздух, близкий по свойствам к морскому умеренному воздуху, который зимой занимает акваторию Тихого океана.

Континентальный умеренный воздух характеризуется малой влажностью и очень низкими температурами воздуха. Трансформация холодного континентального воздуха над Японским морем протекает очень интенсивно, особенно это относится к случаям резких вторжений, когда воздушная масса находится в начальной стадии трансформации.

Основную роль в термической трансформации воздуха в приземном слое играет турбулентный теплообмен между воздушной массой и морской подстилающей поверхностью.

Интенсивность прогревания холодного воздуха над морем прямо пропорциональна разности температур воды и воздуха. Согласно эмпирическим оценкам, величина термической трансформации холодного воздуха у морской поверхности прямо пропорциональна произведению

(T-Tw ) t,

где Т – температура континентального воздуха, Tw – температура поверхности моря, t – время (в часах) перемещения континентального воздуха над морем.

Поскольку разность температур между воздухом континентального муссона и температурой поверхности моря над Японским морем превышает 10-15 °С у берегов Приморья, то прогревание воздуха у поверхности моря происходит очень быстро и зависит от его пути, пройденного над морем.

Кроме того, при поступлении холодного воздуха на тёплую подстилающую поверхность Японского моря возрастает его неустойчивость. Величина вертикального температурного градиента в приземном слое (100-150 м) быстро возрастает с высотой.

Отметим, что при слабом ветре воздух прогревается сильнее, чем при сильном ветре, но при этом прогревается только тонкий приводный слой атмосферы. При сильном ветре в перемешивание вовлекается слой воздуха большей толщины – до 1.5 км и более. Интенсивный турбулентный теплообмен, косвенным индикатором которого служит значительная повторяемость умеренных и сильных ветров над морем, благоприятствует быстрому распространению тёплого воздуха вверх. При этом адвекция холода с высотой возрастает, что приводит к повышению неустойчивости воздушной массы.

При перемещении над морем континентальный воздух не только прогревается, но и обогащается влагой, что также повышает его неустойчивость в соответствии с понижением уровня конденсации.

10. Воздушные массы

При подъёме влажного воздуха в результате процессов конденсации происходит выделение скрытой теплоты парообразования. Выделяющаяся теплота конденсации (скрытая теплота парообразования) идет на нагревание воздуха. При подъёме влажного воздуха падение температуры происходит уже по влажноадиабатическому закону, т.е медленнее, чем в случае сухого воздуха.

По мере перемещения над морем, сопровождающегося прогревом и увлажнением, воздушная масса приобретает черты неустойчивой, по крайней мере, в нижнем 1.5- километровом слое атмосферы. В ней интенсивно развивается не только динамическая, но и термическая конвекция. Об этом свидетельствует образование кучевообразной облачности, представляющей собой деформированные закрытые ячейки. Эти ячейки под влиянием ветра вытягиваются в виде цепочек от берегов Приморья до западных берегов Японии, где их мощность увеличиваются и они дают осадки.

Образование облачности над морем и изменение облачности вдоль пути воздушной массы, в свою очередь, приводит к изменениям температуры воздуха. Образовавшаяся облачность экранирует уходящее излучение и создает противоизлучение атмосферы.

Кроме того, по периферии облачной ячейки формируются нисходящие потоки воздуха. При опускании воздух удаляется от состояния насыщения и адиабатически нагревается. Суммарный нисходящий поток над морем может давать существенный вклад в изменение температуры воздуха над морем.

Дополнительно в сторону роста температуры воздуха играет роль изменение альбедо: перемещение воздуха происходит зимой с континента, где преобладает снежный покров (альбедо в среднем 0.7), на открытую поверхность моря (альбедо в среднем 0.2). Данные условия могут повысить температуру воздуха на 5-10 °С.

Накапливание теплого воздуха у восточных берегов Японского моря активизирует процессы образования облачности и осадков, что, в свою очередь, отражается на формировании поля температуры воздуха.

10.6. Термодинамическая классификация воздушных масс

С точки зрения трансформации воздушных масс их можно классифицировать на тёплые, холодные и нейтральные. Такая классификация носит название термодинамической.

10. Воздушные массы

i Тёплой (холодной) называют воздушную массу, которая теплее (холоднее)

окружающей её среды и в данном районе постепенно охлаждается (нагревается), стремясь приблизиться к тепловому равновесию

Под окружающей средой здесь понимается характер подстилающей поверхности, её тепловое состояние, а также соседние воздушные массы.

Относительно тёплой (холодной) называется воздушная масса, которая теплее (холоднее) окружающих воздушных масс, и которая продолжает прогреваться (охлаждаться) в данном районе, т.е. является холодной (тёплой) в указанном выше смысле.

Чтобы определить, охлаждается или прогревается воздушная масса в данном районе, следует в течение несколько дней сравнивать температуру воздуха, измеренную в один и тот же срок, или же средние суточные температуры воздуха.

i Местной (нейтральной) воздушной массой называют массу, находящуюся в

тепловом равновесии со своей средой, т.е. день за днем сохраняющую свои свойства без существенных изменений.

Таким образом, трансформирующаяся воздушная масса может быть и тёплой, и холодной, а по завершении трансформации она становится местной.

На карте ОТ 1000 500 холодной воздушной массе соответствует ложбина или замкнутая область холода (очаг холода), тёплой – гребень или очаг тепла.

Воздушная масса может характеризоваться как неустойчивым, так и устойчивым равновесием. Данное разделение воздушных масс учитывает один из важнейших результатов теплового обмена – вертикальное распределение температуры воздуха и соответствующий ему вид вертикального равновесия. С устойчивыми (УВМ) и неустойчивыми (НВМ) воздушными массами связаны определённые условия погоды.

Нейтральные (местные) воздушные массы в любой сезон могут быть как устойчивыми, так и неустойчивыми в зависимости от начальных свойств и направления трансформации той воздушной массы, из которой образовалась данная воздушная масса. Над материками нейтральные воздушные массы летом, как правило, неустойчивы, зимой

– устойчивы. Над океанами и морями такие массы летом чаще устойчивы, зимой неустойчивы.

Конденсация это изменение совтояния вещества из газообразного в жидкое или твёрдое. Но что такое конденсация в мастабе планеты?

В каждый момент времени атмосферапланеты Земля содержит свыше 13 миллиардов тонн влаги. Эта цифра практически постоянна, так как потери за счет выпадения осадков, в конечном счете, непрерывно восполняются испарением.

Скорость кругооборота влаги в атмосфере

Скорость кругооборота влаги в атмосфере оценивается колоссальной цифрой - около 16 миллионов тонн в секунду или 505 миллиардов тонн в год. Если бы вдруг весь водяной пар в атмосфере сконденсировался и выпал в виде осадков, то эта вода могла бы покрыть всю поверхность земного шара слоем примерно 2,5 сантиметра, иными словами, атмосфера содержит количество влаги, эквивалентное всего лишь 2,5 сантиметрам дождя.

Сколько времени находится молекула пара в атмосфере?

Так как на Земле в среднем за год выпадает 92 сантиметра, то, следовательно, в атмосфере влага обновляется 36 раз, то есть 36 раз атмосфера насыщается влагой и освобождается от нее. Это значит, что молекула водяного пара пребывает в атмосфере в среднем 10 дней.

Путь молекулы воды


Однажды испарившись, молекула водяного пара дрейфует обычно сотни и тысячи километров, пока не сконденсируется и не выпадет с осадками на Землю. Вода, выпадающая в виде дождя , снега или града на возвышенностях Западной Европы, преодолевает примерно 3000 км от Северной Атлантики. Между превращением жидкой воды в пар и выпадением осадков на Землю совершается несколько физических процессов.

С теплой поверхности Атлантики молекулы воды попадают в теплый влажный воздух, который в дальнейшем поднимается над окружающим его более холодным (более плотным) и более сухим воздухом.

Если при этом будет наблюдаться сильное турбулентное перемешивание воздушных масс, то в атмосфере появится слой перемешивания и облака на границе двух воздушных масс. Около 5% их объема составляет влага. Насыщенный паром воздух всегда легче, во-первых, потому, что он нагрет и поступает с теплой поверхности, во-вторых, потому, что 1 кубический метр чистого пара примерно на 2/5 легче 1 кубический метр чистого сухого воздуха при той же температуре и давлении. Отсюда следует, что влажный воздух легче сухого, а теплый и влажный тем более. Как мы увидим позже, это очень важный факт для процессов изменения погоды.

Перемещение воздушных масс

Воздух может подниматься по двум причинам: либо потому, что становится легче в результате нагревания и увлажнения, либо потому, что на него действуют силы, заставляющие его подниматься над некоторыми препятствиями, например над массами более холодного и плотного воздуха или над холмами и горами.

Охлаждение

Поднимающийся воздух, попав в слои с меньшим атмосферным давлением, вынужден расширяться и при этом охлаждаться. Расширение требует затрат кинетической энергии, которая берется за счет тепловой и потенциальной энергии атмосферного воздуха, а этот процесс неизбежно ведет к понижению температуры. Скорость охлаждения поднимающейся порции воздуха часто меняется, если эта порция перемешивается с окружающим воздухом.

Сухоадиабатический градиент

Сухой воздух, в котором отсутствует конденсация или испарение, а также перемешивание, не получающий энергию в другой форме, охлаждается или нагревается на постоянную величину (на 1°С через каждые 100 метров) по мере подъема или опускания. Эту величину называют сухоадиабатическим градиентом. Но если поднимающаяся воздушная масса влажная и в ней происходит конденсация, то при этом выделяется скрытая теплота конденсации и температура насыщенного паром воздуха падает значительно медленнее.

Влажноадиабатический градиент

Эта величина изменения температуры называется влажно-адиабатическим градиентом. Она не постоянна, а изменяется с изменением величины высвобождающейся скрытой теплоты, другими словами, она зависит от количества конденсируемого пара. Количество же пара зависит от того, насколько сильно понижается температура воздуха. В нижних слоях атмосферы, где воздух теплый и влажность высокая, влажно-адиабатический градиент чуть больше половины сухоадиабатического градиента. Но влажно-адиабатический градиент постепенно растет с высотой и на очень большой высоте в тропосфере практически равен сухоадиабатическому градиенту.

Плавучесть движущегося воздуха определяется соотношением между его температурой и температурой окружающего воздуха. Как правило, в реальной атмосфере температура воздуха падает с высотой неравномерно (это изменение называется просто градиентом).

Если масса воздуха теплее и поэтому менее плотная, чем окружающий воздух (а влагосодержание постоянно), то она поднимается вверх так же, как детский мяч, погруженный в бак. И наоборот, когда движущийся воздух холоднее окружающего, то плотность его выше и он опускается. Если воздух имеет ту же самую температуру, что и соседние массы, то их плотность равна и масса остается неподвижной или движется только вместе с окружающим воздухом.

Таким образом, в атмосфере присутствуют два процесса, один из которых способствует развитию вертикального движения воздуха, а другой замедляет его.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

С самого детства меня завораживали невидимые движения вокруг нас: слабый ветерок, кружащий осенние листья в тесном дворике или мощный зимний циклон. Оказывается, эти процессы имеют вполне понятные физические законы.

Какие силы заставляют воздушные массы двигаться

Теплый воздух легче, чем холодный – этот простой принцип способен объяснить движение воздуха на планете. Начинается всё на экваторе. Здесь солнечные лучи падают на поверхность Земли под прямым углом, и маленькой частичке экваториального воздух достается чуть больше тепла, чем соседним. Эта теплая частица становится легче, чем соседние, а значит, начинает всплывать вверх до тех пор, пока не растеряет всё тепло и не начнет снова опускаться. Но движение вниз уже происходит в тридцатых широтах Северного или Южного полушария.

Если бы не существовало дополнительных сил, так бы воздух и двигался от экватора к полюсам. Но существуют не одна, а сразу несколько сил, которые заставляют воздушные массы перемещаться:

  • Сила плавучести. Когда теплый воздух всплывает, а холодный остается внизу.
  • Сила Кориолиса. О ней расскажу чуть ниже.
  • Рельеф планеты. Сочетания морей и океанов, гор и равнин.

Отклоняющая сила вращения Земли

Метеорологам было бы легче, если бы наша планета не вращалась. Но она вращается! Это порождает отклоняющую силу вращения Земли или силу Кориолиса. Из-за движения планеты та самая «легкая» частица воздуха не только вытесняется, скажем, на север, но и смещается вправо. Либо она вытесняется на юг и отклоняется влево.

Так зарождаются постоянные ветра западных или восточных направлений. Возможно, вы слышали о течении Западных Ветров или о Ревущих сороковых? Эти постоянные движения воздуха возникли именно благодаря силе Кориолиса.


Моря и океаны, горы и равнины

Окончательную неразбериху вносит рельеф. Распределение суши и океана изменяет классическую циркуляцию. Так, в Южном полушарии суши намного меньше, чем в Северном, и ничто не мешает воздуху двигаться над водной гладью в нужном ему направлении, нет ни гор, ни крупных городов, тогда как Гималаи в корне меняют циркуляцию воздуха в своем районе.

важный фактор формирования климата. Она выражена перемещением различных типов воздушных масс.

Воздушные массы — это подвижные части тропосферы, отличающиеся друг от друга температурой и влажностью. Воздушные массы бывают морскими и континентальными.

Морские воздушные массы формируются над Мировым океаном. Они более влажные по сравнению с континентальными, образующимися над сушей.

В различных климатических поясах Земли формируются свои воздушные массы: экваториальные, тропические, умеренные, арктические и антарктические.

Перемещаясь, воздушные массы долго сохраняют свои свойства и поэтому определяют погоду тех мест, куда они приходят.

Арктические воздушные массы формируются над Северным Ледовитым океаном (зимой — и над севером материков Евразия и Северная Америка). Они отличаются низкой температурой, невысокой влажностью и повышенной прозрачностью воздуха. Вторжения арктических воздушных масс в умеренные широты вызывают резкое похолодание. При этом устанавливается преимущественно ясная и малооблачная погода. При продвижении в глубь материка на юг арктические воздушные массы трансформируются в сухой континентальный воздух умеренных широт.

Континентальные арктические воздушные массы формируются над ледяной Арктикой (в центральной и восточной ее частях) и над северным побережьем материков (зимой). Их особенностями являются очень низкие температуры воздуха и низкое содержание влаги. Вторжение континентальных арктических воздушных масс на материк приводит к сильному похолоданию при ясной погоде.

Морские арктические воздушные массы формируются в более теплых условиях: над свободной от льда акваторией с более высокой температурой воздуха и большим влагосодержанием — это европейская Арктика. Вторжения таких воздушных масс на материк зимой даже вызывают потепление.

Аналогом арктического воздуха Северного полушария в Южном полушарии являются антарктические воздушные массы. Их влияние распространяется в большей степени на прилегающие морские поверхности и редко на южную окраину материка Южная Америка.

Умеренный (полярный) воздух — это воздух умеренных широт. Умеренные воздушные массы проникают в полярные, а также субтропические и тропические широты.

Континентальные умеренные воздушные массы зимой обычно приносят ясную погоду с крепкими морозами, а летом — достаточно теплую, но облачную, нередко дождливую, с грозами.

Морские умеренные воздушные массы на материки переносятся западными ветрами. Их отличают высокая влажность и умеренные температуры. Зимой морские умеренные воздушные массы приносят пасмурную погоду, обильные осадки и оттепели, а летом — большую облачность, дожди и понижение температуры.

Тропические воздушные массы формируются в тропических и субтропических широтах, а летом — и в континентальных районах на юге умеренных широт. Тропический воздух проникает в умеренные и экваториальные широты. Высокая температура — общая черта тропического воздуха.

Континентальные тропические воздушные массы отличаются сухостью и запыленностью, а морские тропические воздушные массы — высокой влажностью.

Экваториальный воздух, возникающий в области Экваториальной депрессии, очень теплый и влажный. Летом в Северном полушарии экваториальный воздух, смещаясь на север, вовлекается в циркуляционную систему тропических муссонов.

Экваториальные воздушные массы формируются в экваториальной зоне. Их отличают высокие температуры и влажность в течение всего года, причем это касается воздушных масс, формирующихся как над сушей, гак и над океаном. Поэтому на морские и континентальные подтипы экваториальный воздух не подразделяется.

Вся система воздушных течений в атмосфере называется общей циркуляцией атмосферы.

Атмосферный фронт

Воздушные массы постоянно движутся, изменяют свои свойства (трансформируются), но между ними остаются довольно резкие границы — переходные зоны шириной в несколько десятков километров. Эти пограничные зоны называются атмосферными фронтами и характеризуются неустойчивым состоянием температуры, влажности воздуха, .

Пересечение такого фронта с земной поверхностью называется линией атмосферного фронта.

При прохождении атмосферного фронта через какую-либо местность над ней меняются воздушные массы и, как следствие, погода.

Для умеренных широт характерны фронтальные осадки. В зоне атмосферных фронтов возникают обширные облачные образования протяженностью в тысячи километров и выпадают осадки. Как они возникают? Атмосферный фронт можно рассматривать как границу двух воздушных масс, которая наклонена к земной поверхности под очень малым углом. Холодный воздух находится рядом с теплым и над ним в виде пологого клина. При этом теплый воздух поднимается вверх по клину холодного воздуха и охлаждается, приближаясь к состоянию насыщения. Возникают облака, из которых выпадают осадки.

Если фронт перемещается в сторону отступающего холодного воздуха, наступает потепление; такой фронт называется теплым. Холодный фронт, наоборот, надвигается на территорию, занятую теплым воздухом (рис. 1).

Рис. 1. Типы атмосферных фронтов: а — теплый фронт; б — холодный фронт

Общая циркуляция атмосферы - круговоротные движения воздушных масс, простирающиеся по всей планете. Они являются переносчиками различных элементов и энергии по всей атмосфере.

Прерывистое и сезонное размещение тепловой энергии вызывает воздушные течения. Это приводит к разному прогреванию почвы и воздуха на всевозможных территориях.

Именно поэтому солнечное влияние является основоположником движения воздушных масс и циркуляции атмосферы. Воздушные движения на нашей планете бывают абсолютно разные - достигающие нескольких метров или десятков километров.

Самая простая и понятная схема циркуляции атмосферы бала создана еще много лет назад и используется в наши дни. Движение воздушных масс неизменно и безостановочно, они движутся по нашей планете, создавая замкнутый круг. Быстрота передвижения этих масс напрямую связана с солнечной радиацией, взаимодействия с океаном и взаимодействия атмосферы с почвой.

Атмосферные движения вызываются нестабильностью распределения солнечного тепла по всей планете. Чередование противоположных воздушных масс - теплых и холодных, - их постоянное скачкообразное перемещение вверх и вниз, образует различные циркуляционные системы.

Получение тепла атмосферой происходит тремя путями - использованием солнечной радиации, с помощью конденсации пара и теплообмена с земным покровом.

Влажный воздух также важен для насыщения атмосферы теплом. Огромную роль в этом процессе играет тропическая зона Тихого океана.

Воздушные потоки в атмосфере

(Потоки воздуха в атмосфере Земли )

Воздушные массы различаются по своему составу, зависящему от места зарождения. Воздушные потоки подразделяются на 2 основных критерия - континентальные и морские. Континентальные формируются над почвенным покровом, поэтому они мало увлажнены. Морские, наоборот, очень влажные.

Основными воздушными потоками Земли являются пассаты, циклоны и антициклоны.

Пассаты образуются в тропиках. Их движение направлено в сторону экваториальных территорий. Это связано с перепадами давления - на экваторе оно низкое, а в тропиках - высокое.

(Красным на схеме отображены пассаты (trade winds) )

Образование циклонов происходит над поверхностью теплых вод. Воздушные массы передвигаются от центра к краям. Их влияние характеризуется обильными осадками и сильными ветрами.

Тропические циклоны действуют над океанами на приэкваториальных территориях. Они формируются в любое время года, вызывая ураганы и штормы.

Антициклоны образуются над материками, где понижена влажность, но есть достаточное количество солнечной энергии. Воздушные массы в этих потоках движутся от краев к центральной части, в которой они нагреваются и постепенно снижаются. Именно поэтому циклоны приносят ясную и безветренную погоду.

Муссоны являются переменными ветрами, направление которых меняется посезонно.

Также выделяются вторичные воздушные массы, такие как тайфун и торнадо, цунами.