Выбор корней тригонометрических уравнений. Записи с меткой "корни тригонометрического уравнения на промежутке"

По вашим просьбам!

13. Решите уравнение 3-4cos 2 x=0. Найдите сумму его корней, принадлежащих промежутку .

Понизим степень косинуса по формуле: 1+cos2α=2cos 2 α. Получаем равносильное уравнение:

3-2(1+cos2x)=0 ⇒ 3-2-2cos2x=0 ⇒ -2cos2x=-1. Делим обе части равенства на (-2) и получаем простейшее тригонометрическое уравнение:

14. Найдите b 5 геометрической прогрессии, если b 4 =25 и b 6 =16.

Каждый член геометрической прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

(b n) 2 =b n-1 ∙b n+1 . У нас (b 5) 2 =b 4 ∙b 6 ⇒ (b 5) 2 =25·16 ⇒ b 5 =±5·4 ⇒ b 5 =±20.

15. Найдите производную функции: f(x)=tgx-ctgx.

16. Найдите наибольшее и наименьшее значения функции y(x)=x 2 -12x+27

на отрезке .

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке , нужно найти значения этой функции на концах отрезка и в тех критических точках, которые принадлежат данному отрезку, а затем из всех полученных значений выбрать наибольшее и наименьшее.

Найдем значения функции при х=3 и при х=7, т.е. на концах отрезка.

y(3)=3 2 -12∙3+27 =9-36+27=0;

y(7)=7 2 -12∙7+27 =49-84+27=-84+76=-8.

Находим производную данной функции: y’(x)=(x 2 -12x+27)’ =2x-12=2(x-6); критическая точка х=6 принадлежит данному промежутку . Найдем значение функции при х=6.

y(6)=6 2 -12∙6+27 =36-72+27=-72+63=-9. А теперь выбираем из трех полученных значений: 0; -8 и -9 наибольшее и наименьшее: у наиб. =0; у наим. =-9.

17. Найдите общий вид первообразных для функции:

Данный промежуток – это область определения данной функции. Ответы должны начинаться с F(x), а не с f(x) – ведь мы ищем первообразную. По определению функция F(x) является первообразной для функции f(x), если выполняется равенство: F’(x)=f(x). Так что можно просто находить производные предложенных ответов, пока не получится данная функция. Строгое решение – это вычисление интеграла от данной функции. Применяем формулы:

19. Составьте уравнение прямой, содержащей медиану BD треугольника АВС, если его вершины А(-6; 2), В(6; 6) С(2; -6).

Для составления уравнения прямой нужно знать координаты 2-х точек этой прямой, а нам известны координаты только точки В. Так как медиана BD делит противолежащую сторону пополам, то точка D является серединой отрезка АС. Координаты середины отрезка есть полусуммы соответственных координат концов отрезка. Найдем координаты точки D.

20. Вычислить:

24. Площадь правильного треугольника, лежащего в основании прямой призмы, равна

Эта задача — обратная к задаче № 24 из варианта 0021.

25. Найдите закономерность и вставьте недостающее число: 1; 4; 9; 16; …

Очевидно, что это число 25 , так как нам дана последовательность квадратов натуральных чисел:

1 2 ; 2 2 ; 3 2 ; 4 2 ; 5 2 ; …

Всем удачи и успехов!

№10 (757) ИЗДАЕТСЯ С 1992 г. mat.1september.ru Тема номера Проверка знаний Наш проект Соревнования Внимание – Творческий Разбор урока Кубок Урала на сильного экзамен «Аксиома ученика параллельных прямых» c. 16 c. 20 c. 44 7 6 5 4 3 ерсия журн яв а на л 2 он а ны е р тель элект лни допо териа лы 1 м а ине те б м ка и чно в Л айте ru на с 1 2 3 4 5 6 0 r. w w be w. 1 m septe октябрь 1september.ru 2014 м а т е м а т и к а Подписка на сайте www.1september.ru или по каталогу «Почта России»: 79073 (бумажная версия); 12717 (CD-версия) 10–11 классы Обучениеотбору С. МУГАЛЛИМОВА, пос. Белый Яр, Тюменская обл. корнейтригоно- метрического уравнения Тригонометрия в школьном курсе математи- ки занимает особое место и традиционно считается трудной и для изложения учителем, и для усвоения учащимися. Это один из разде- лов, изучение которого зачастую воспринимается многими как «ма- тематика ради математики», как изучение материала, не имеющего практикум практической ценности. Между тем тригонометрический аппарат используется во многих приложениях математики и оперирование тригонометрическими функциями необходимо для реализации вну- три- и межпредметных связей в обучении математике. Заметим, что тригонометрический материал создает благодат- ную почву для формирования различных метапредметных уме- ний. Например, обучение отбору корней тригонометрического уравнения и решений тригонометрического неравенства позволя- / ет формировать умение, связанное с поиском решений, удовлетво- м е то д о б ъ е д и н е н и е ряющих заданным условиям. Методика обучения отбору корней опирается на перечисленные ниже факты. Знание: – расположения точек на тригонометрической окружности; – знаков тригонометрических функций; – местоположения точек, соответствующих наиболее распро- страненным значениям углов, и углов, связанных с ними форму- лами приведения; – графиков тригонометрических функций и их свойств. Понимание: – того, что на тригонометрической окружности точка характе- ризуется тремя показателями: 1) углом поворота точки P (1; 0); 2) абсциссой, которая соответствует косинусу этого угла и 3) орди- натой, соответствующей синусу этого угла; – многозначности записи корня тригонометрического уравне- 30 ния и зависимости конкретного значения корня от значения цело- го параметра; – зависимости величины угла поворота радиуса от количества полных оборотов либо от периода функции. Умение: – отмечать на тригонометрической окружности точки, соответ- ствующие положительным и отрицательным углам поворота ра- диуса; – соотносить значения тригонометрических функций с местопо- ложением точки на тригонометрической окружности; математика октябрь 2014 – записывать значения углов поворота точки 3.3. Отметить как можно больше точек, со- P (1; 0), соответствующих симметричным точ- ответствующих данным значениям функции кам на тригонометрической окружности; 1 (например, | sin x | =). – записывать значения аргументов тригоно- 2 метрических функций по точкам графика функ- 3.4. Отметить промежутки, соответствующие ции с учетом периодичности функции, а также заданным ограничениям на значения функции четности и нечетности; 3 1 (например, − ≤ cos x ≤). – по значениям переменных находить соответ- 2 2 ствующие точки на графиках функций; 3.5. При заданных значениях функции и огра- – объединять серии корней тригонометриче- ничениях на значения аргумента отметить соот- ских уравнений. ветствующие точки и записать значения аргу- Таким образом, в процессе изучения тригоно- мента (например, указать на графике и сделать метрического материала необходимо выполнить соответствующие записи для точек, удовлетво- следующие упражнения. 5π ряющих условиям tg x = 3 и −3π < x <). 1. При изучении начал тригонометрии (в пря- 2 моугольном треугольнике) заполнить (и запом- Перечисленные выше действия полезны при нить!) таблицу значений тригонометрических решении задачи С1 ЕГЭ по математике. В этой функций для углов 30°, 45°, 60° и 90°. задаче, помимо решения тригонометрического 2. При введении понятия тригонометрической уравнения, требуется произвести отбор корней, окружности: и для успешного выполнения этого задания на 2.1. Отметить точки, соответствующие по- экзамене, помимо перечисленных знаний и уме- воротам радиуса на 30°, 45°, 60°, затем на 0, ний, ученик должен владеть следующими навы- π 3π π π π π π π 5π 3π ками: , π, 2π, − , − , − , 2 2 6 4 3 6 4 3 6 4 – решать простейшие тригонометрические 2π 7π 5π 4π уравнения и неравенства; , . 3 6 4 3 – применять тригонометрические тождества; 2.2. Записать значения углов для указанных – использовать различные методы решения выше точек с учетом периодичности движения уравнений; по окружности. – решать двойные линейные неравенства; 2.3. Записать значения углов для указанных – оценивать значение иррационального числа. выше точек с учетом периодичности движения Перечислим способы отбора корней в подоб- по окружности при заданных значениях параме- ных заданиях. тра (например, при n = 2, n = –1, n = –5). 2.4. Найти с помощью тригонометрической Способ перевода в градусную меру окружности значения синуса, косинуса, танген- 1 Найти корни уравнения sin x = , удовлетво- са и котангенса для указанных выше углов. 2 2.5. Отметить на окружности точки, соответ-  3π 5π  ряющие условию x ∈  − ;  . ствующие требуемым значениям тригонометри-  2 2  ческих функций. Решение. Корни уравнения имеют вид 2.6. Записать числовые промежутки, удовлет- π x = (−1)n + πn, где n ∈ Z. воряющие заданным ограничениям значения 6 3 2 Это значит, что функции (например, − ≤ sin α ≤). 2 2 x = 30° + 360°жn или x = 150° + 360°жn. 2.7. Подобрать формулу для записи углов, со-  3π 5π  ответствующих нескольким точкам на тригоно- Условие x ∈  − ; можно записать в виде метрической окружности (например, объединить  2 2  π 3π x ∈ [–270°; 450°]. Указанному промежутку при- записи x = ± + 2πn, n ∈ Z, и x = ± + 2πk, k ∈ Z). 4 4 надлежат следующие значения: 3. При изучении тригонометрических функ- ций, их свойств и графиков: 30°, 150°, –210°, 390°. 3.1. Отметить на графике функции точки, со- Выразим величины этих углов в радианах: ответствующие указанным выше значениям ар- π 5π 7π 13π , − , . гументов. 6 6 6 6 3.2. При заданном значении функции (напри- Это не самый изящный способ решения по- мер, ctg x = 1) отметить как можно больше точек добных заданий, но он полезен на первых порах на графике функции и записать соответствую- освоения действия и в работе со слабыми учени- щие значения аргумента. ками. 31 математика октябрь 2014 Способ движения по окружности Способ оценки 3 Решить уравнение Найти корни уравнения tg x = , удовлетво- tg x − 1 3 = 0.  π  − cos x ряющие условию x ∈  − ; 2π  .  2  Решение. Данное уравнение равносильно си- 3 Решение. Корни уравнения tg x = имеют стеме  tg x = 1, π 3  вид x = + πn, n ∈ Z. Потребуем выполнения 6  cos x < 0.  π  условия x ∈  − ; 2π  , для этого решим двойное Отметим на тригонометрической окружности  2  корни уравнения tg x = 1, соответствующие зна- неравенство: π π π 2 5 чениям углов поворота x = + πn, n ∈ Z (рис. 1). − ≤ + πn ≤ 2π, − ≤ n ≤ 1 . 4 2 6 3 6 Выделим также дуги окружности, лежащие во II π 7π Отсюда n = 0 или n = 1. Значит x = или x = . и III координатных четвертях, так как в этих чет- 6 6 вертях выполнено условие cos x < 0. Графический способ 1 Найти корни уравнения sin x = , удовлетво- 2  3π 5π  ряющие условию x ∈  − ;  .  2 2  Решение. Построим график функции y = sin x (рис. 2). Корни данного уравнения являются абс- циссами точек пересечения графика с прямой практикум 1 y= . Отметим такие точки, выделив фрагмент 2  3π 5π  графика на промежутке  − ;  .  2 2  Рис. 1 Из рисунка видно, что решениями системы, а значит, и решениями данного уравнения явля- / π ются значения x = + π(2n + 1), n ∈ Z. м е то д о б ъ е д и н е н и е 4 Рис. 2 Способ перебора Здесь cos x π π 5π π 13π Решить уравнение = 0. x0 = , x1 = π − = , x2 = + 2π = , 16 − x 2 6 6 6 6 6 Решение. Данное уравнение равносильно си- 5π 7π стеме x3 = − 2π = − . 6 6  cos x = 0,  16 − x > 0. 2 Таким образом, на заданном промежутке урав- π нение имеет четыре корня: Из уравнения cos x = 0 получим: x = + πn, n ∈ Z. 2 π 5π 13π 7π , − . Решения неравенства 16 – x2 > 0 принадлежат 6 6 6 6 промежутку (–4; 4). В заключение выделим несколько моментов. Выполним перебор: Умение, связанное с поиском решений, удо- π π 3, 14 влетворяющих заданным значениям аргумента, если n = 0, то x = + π ⋅0 = ≈ ∈(−4; 4); 2 2 2 является важным в решении многих приклад- π 3π 3 ⋅ 3, 14 ных задач, и формировать это умение необходи- если n = 1, то x = + π = ≈ ∉(−4; 4); 2 2 2 мо в процессе изучения всего тригонометриче- если n ≥ 1, то получим значения x, большие 4; ского материала. π π 3, 14 В процессе обучения решению задач, в кото- если n = –1, то x = −π= − ≈ − ∈(−4; 4); 2 2 2 рых требуется отобрать корни тригонометриче- π 3π 3 ⋅ 3, 14 ского уравнения, с учениками следует обсудить если n = –2, то x = − 2π = − ≈− ∉(−4; 4); 2 2 2 разные способы выполнения этого действия, а если n ≤ –2, то получим значения x, меньшие –4. также выяснить случаи, когда тот или иной спо- π π соб может оказаться наиболее удобным или, на- Данное уравнение имеет два корня: и − . 2 2 оборот, непригодным. математика октябрь 2014 32











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок повторения, обобщения и систематизации изученного материала.

Цель урока:

  • образовательная: закрепить умение выполнять отбор корней тригонометрического уравнения на числовой окружности; стимулировать учащихся к овладению рациональными приёмами и методами решения тригонометрических уравнений;
  • развивающая: развивать логическое мышление, умение выделять главное, проводить обобщение, делать верные логические выводы;
  • воспитательная: воспитание таких качеств характера как настойчивость в достижении цели, умение не растеряться в проблемной ситуации.

Оборудование: мультимедийный проектор, компьютер.

Ход урока

I. Организационный момент.

Проверка готовности к уроку, приветствие.

II. Постановка цели.

Французский писатель Анатоль Франс однажды сказал: «…Чтобы переварить знания, надо поглощать их с аппетитом.» Так давайте сегодня последуем этому мудрому совету и будем поглощать знания с большим желанием, ведь они пригодятся вам в ближайшее время на ЕГЭ.

Сегодня на уроке мы продолжим отрабатывать навыки отбора корней в тригонометрических уравнениях с помощью числовой окружности. Окружность удобно использовать как при отборе корней на промежутке, длина которого не превышает 2π, так и в случае, когда значения обратных тригонометрических функций не являются табличными. При выполнении заданий будем применять не только изученные методы и способы, но и нестандартные подходы.

III. Актуализация опорных знаний.

1. Решите уравнение: (Слайд 3-5)

a) cosx = 0
б) cosx = 1
в) cosx = - 1
г) sinx = 1
д) sinx = 0
е) sinx = - 1
ж) tgx = 1
з) tgx = 0

2. Заполните пропуски: (Слайд 6)

sin2x =
cos2x =
1/cos 2 x – 1=
sin(π/2 – x) =
sin(x – π/2) =
cos(3π/2 – 2x) =

3. Покажите на числовой окружности следующие отрезки (Слайд 7) [- 7π/2; -2π], [-π; π/2], [π; 3π], , [-2π; -π/2], [-3π/2; -π/2], [-3π; -2π],, [-4π; -5π/2].

4. Применяя теорему Виета и её следствия, найдите корни уравнений: (Слайд 8)

t 2 -2t-3=0; 2t 2 -3t-3=0; t 2 +4t-5=0; 2t 2 +t-1=0; 3t 2 +7t=4=0; 2t 2 -3t+1=0

IV. Выполнение упражнений.

(Слайд 9)

Многообразие методов преобразований тригонометрических выражений подталкивает нас к выбору более рационального из них.

1. Решите уравнения : (Один ученик решает на доске. Остальные участвуют в выборе рационального метода решения и записывают в тетрадь. Учитель следит за верностью рассуждений учащихся. )

1) 2sin 3 x-2sinx+cos 2 x=0. Укажите корни, принадлежащие отрезку [-7π/2; - 2π].

Решение.

[-7π/2; -2π]

Получим числа: - 7π/2; -19π/6;-5π/2.

Ответ: а) π /2+ πn , π /6+2 πn , 5 π /6+2 πn , n Є Z ; б) - 7π/2, -19π/6,-5π/2.

2) sin 2 x-2sinx∙cosx-3cos 2 x=0. Укажите корни, принадлежащие отрезку [-π; π/2].

Решение.

a ) Разделим обе части уравнения на cos 2 x =0. Получим:

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [-π; π/2]

Получим числа: - π+ arctg 3 ; -π/4; arctg 3.

Ответ: а) - π /4+ πn , arctg 3+ πn , n Є Z ; б) - π+ arctg 3 , -π/4, arctg 3.

3) 2sin 2 x-3cosx-3=0. Укажите корни, принадлежащие отрезку [π; 3π].

Решение.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [π; 3π]

Получим числа: π; 4π/3; 8π/3; 3π.

Ответ: а) π +2 πn , ±2 π /3+2 πn , n Є Z ; б) π, 4π/3, 8π/3, 3π.

4) 1/cos2x +4tgx - 6=0 .Укажите корни, принадлежащие отрезку [;7π/2] .

Решение.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [; 7π/2]

Получим числа: 9π/4; 3π- arctg 5;1 3π/4.

Ответ: а) π /4+ πn , - arctg 5+ πn , n Є Z ; б) 9π/4, 3π- arctg 5, 1 3π/4.

5) 1/cos 2 x + 1/sin(x – π/2) = 2. Укажите корни, принадлежащие отрезку [-2π; -π/2].

Решение.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [-2 π; -π/2]

Получим числа: -5π/3;- π .

Ответ: а) π +2 πn , ± π /3+2 πn , n Є Z ; б) -5π/3;- π .

2. Работа в парах : (Двое учащихся работают на боковых досках, остальные в тетрадях. Затем задания проверяются и анализируются.)

Решите уравнения:

Решение .

Учитывая, что tgx ≠1 и tgx >0, отберём корни с помощью числовой окружности. Получим:

x = arccos √2/3+2 πn , n Є Z .

Ответ: arccos √2/3+2 πn , n Є Z .

6соs2x-14 cos 2 x - 7sin2x = 0. Укажите корни, принадлежащие отрезку [-3π/2; - π/2].

Решение.

a ) 6(cos 2 x - sin 2 x )-14 cos 2 x -14 cosxsinx =0; 6 cos 2 x -6 sin 2 x -14 cos 2 x -14 cosxsinx =0;

3 sin 2 x +7 cosxsinx +4 cos 2 x =0 Разделим обе части уравнения на cos 2 x=0. Получим:

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [-3π/2; -π/2]

Получим числа: -5 π /4;- π - arctg 4/3.

Ответ: а) - π /4+ πn , - arctg 4/3+ πn , n Є Z ; б) -5π/4, - π - arctg 4/3.

3. Самостоятельная работа . (После выполнения работы учащиеся обмениваются тетрадями и проверяют работу своего одноклассника, исправляя ошибки (если таковы есть) ручкой с красной пастой.)

Решите уравнения:

1) 2cos 2 x+(2-√2)sinx+√2-2=0. Укажите корни, принадлежащие отрезку [-3π; -2π].

Решение.

a ) 2(1- sin 2 x )+2 sinx -√2 sinx +√2-2=0; 2-2 sin 2 x +2 sinx -√2 sinx +√2-2=0; -2 sinx (sinx -1)-√2(sinx -1)=0;

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [-3π; -2π].

Получим числа: -11 π /4;-9 π /4.

Ответ: а) π /2+2 πn , - π /4+2 πn , -3 π /4+2 πn , n Є Z ; б) -11π/4, -9 π /4 .

2) cos(3π/2-2x)=√2sinx. Укажите корни, принадлежащие отрезку

Решение.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку .

Получим числа: 13 π /4;3 π ;4 π .

Ответ: а) πn , ±3 π /4+2 πn , n Є Z ; б) 13 π /4,3 π , 4 π .

3)1/tg 2 x – 3/sinx+3=0. Укажите корни, принадлежащие отрезку [-4π; -5π/2]

Решение.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку [-4π;-5π/2].

Получим числа: -19 π /6;-7 π /2;-23 π /6.

Ответ: а) π /2+2 πn , π /6+2 πn , 5 π /6+2 πn , n Є Z ; б) -19 π /6,-7 π /2,-23 π /6.

V. Подведение итогов урока.

Отбор корней в тригонометрических уравнениях требует хороших знаний формул, умений применять их на практике, требует внимания и сообразительности.

VI. Стадия рефлексии.

(Слайд 10)

На этапе рефлексии учащимся предлагается составить синквейн и в поэтической форме

выразить своё отношение к изучаемому материалу.

Например:

Окружность.
Числовая, тригонометрическая.
Изучим, поймем, заинтересуемся.
Присутствует в ЕГЭ.
Реальность.

VII. Домашнее задани e .

1. Решите уравнения:

2. Практическое задание.

Составьте по два тригонометрических уравнения, содержащих формулы двойного аргумента.

VIII. Литература.

ЕГЭ-2013: Математика: самое полное издание типовых вариантов заданий/ авт.-сост. И.В. Ященко, И.Р. Высоцкий; под ред. А.Л. Семёнова, И.В. Ященко – М.:АСТ: Астрель, 2013.

Цель урока:

  1. Повторить формулы решения простейших тригонометрических уравнений.
  2. Рассмотреть три основных способа отбора корней при решении тригонометрических уравнений:
    отбор неравенством, отбор знаменателем и отбор в промежуток.

Оборудование: Мультимедийная аппаратура.

Методический комментарий .

  1. Обратить внимание учащихся на важность темы урока.
  2. Тригонометрические уравнения, в которых требуется провести отбор корней, часто встречаются в тематических тестах ЕГЭ;
    решение таких задач позволяет закрепить и углубить ранее полученные знания учащихся.

Ход урока

Повторение. Полезно вспомнить формулы решения простейших тригонометрических уравнений (экран).

Значения Уравнение Формулы решения уравнений
sinx=a
sinx=a уравнение решений не имеет
а=0 sinx=0
а=1 sinx= 1
а= -1 sinx= -1
cosx=a
cosx=a уравнение решений не имеет
а=0 cosx=0
а=1 cosx= 1
а= -1 cosx= -1
tgx=a
ctgx=a

При отборе корней в тригонометрических уравнениях запись решений уравнений sinx=a, сosx=a в виде совокупности более оправдана. В этом мы убедимся при решении задач.

Решение уравнений.

Задача . Решить уравнение

Решение. Данное уравнение равносильно следующей системе

Рассмотрим окружность. Отметим на ней корни каждой системы и отметим дугой ту часть окружности, где выполняется неравенство (рис. 1 )

Рис. 1

Получаем, что не может быть решением исходного уравнения.

Ответ:

В этой задаче мы провели отбор корней неравенством.

В следующей задаче проведем отбор знаменателем. Для этого выберем корни числителя, но такие, что они не будут являться корнями знаменателя.

Задача 2. Решить уравнение.

Решение . Запишем решение уравнения, используя последовательные равносильные переходы.

Решая уравнение и неравенство системы, в решении ставим разные буквы, которые обозначают целые числа. Иллюстрируя на рисунке, отметим на окружности корни уравнения кружочками, а корни знаменателя крестиками (рис.2.)

Рис. 2

Из рисунка хорошо видно, что – решение исходного уравнения.

Обратим внимание учащихся на то, что отбор корней проще было проводить, используя систему c нанесением соответствующих точек на окружности.

Ответ:

Задача 3. Решить уравнение

3sin2x = 10 cos 2 x – 2 /

Найти все корни уравнения, принадлежащие отрезку .

Решение. В этой задаче производится отбор корней в промежуток, который задается условием задачи. Отбор корней в промежуток можно выполнять двумя способами: перебирая значения переменной для целых чисел или решая неравенство.

В данном уравнении отбор корней проведем первым способом, а в следующей задаче – путем решения неравенства.

Воспользуемся основным тригонометрическим тождеством и формулой двойного угла для синуса. Получим уравнение

6sinxcosx = 10cos 2 x – sin 2 x – cos 2 x, т.е. sin 2 x – 9cos 2 x+ 6sinxcosx = 0

Т.к. в противном случае sinx = 0 , что не может быть, так как не существует углов, для которых одновременно синус и косинус равные нулю в виду sin 2 x+ cos 2 x = 0.

Разделим обе части уравнения на cos 2 x. Получим tg 2 x+ 6tgx – 9 = 0 /

Пусть tgx = t , тогда t 2 + 6t – 9 = 0, t 1 = 2,t 2 = –8.

tgx = 2 или tg = –8;

Рассмотрим каждую серию отдельно, находя точки внутри промежутка , и по одной точке слева и справа от него.

Если к=0 , то x=arctg2 . Этот корень принадлежит рассматриваемому промежутку.

Если к=1 , то x=arctg2+. Этот корень тоже принадлежит рассматриваемому промежутку.

Если к=2 , то . Ясно, что данный корень не принадлежит нашему промежутку.

Мы рассмотрели одну точку справа от данного промежутка, поэтому к=3,4,… не рассматриваются.

Если к = –1, получим – не принадлежит промежутку .

Значения к = –2, –3,… не рассматриваются.

Таким образом, из данной серии два корня принадлежат промежутку

Аналогично предыдущему случаю убедимся, что при п = 0 и п = 2, а, следовательно, при п = –1, –2,…п = 3,4,… мы получим корни, не принадлежащие промежутку . Лишь при п=1 получим , принадлежащий этому промежутку.

Ответ:

Задача 4. Решить уравнение 6sin 2 x+2sin 2 2x=5 и указать корни, принадлежащие промежутку .

Решение. Приведем уравнение 6sin 2 x+2sin 2 2x=5 к квадратному уравнению относительно cos2x.

Откуда cos2x

Здесь применим способ отбора в промежуток при помощи двойного неравенства

Так как к принимает только целые значения, то возможно лишь к=2,к=3 .

При к=2 получим , при к=3 получим .

Ответ:

Методический комментарий. Приведенные четыре задачи рекомендуется решать учителю у доски с привлечением учащихся. Для решения следующей задачи лучше вызвать к дочке сильного учащегося, предоставив ему максимальную самостоятельность в рассуждениях.

Задача 5. Решить уравнение

Решение. Преобразовывая числитель, приведем уравнение к более простому виду

Полученное уравнение равносильно совокупности двух систем:

Отбор корней на промежутке (0; 5) проведем двумя способами. Первый способ -для первой системы совокупности, второй способ – для второй системы совокупности.

, 0.

Так как к – целое число, то к=1 . Тогда х = – решение исходного уравнения.

Рассмотрим вторую систему совокупности

Если n=0 , то . При п = -1; -2;… решений не будет.

Если п=1,– решение системы и, следовательно, исходного уравнения.

Если п=2 , то

При решений не будет.