Способы отбора корней в тригонометрических уравнениях. Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) на тему: Отбор корней при решении тригонометрических уравнений

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

По вашим просьбам!

13. Решите уравнение 3-4cos 2 x=0. Найдите сумму его корней, принадлежащих промежутку .

Понизим степень косинуса по формуле: 1+cos2α=2cos 2 α. Получаем равносильное уравнение:

3-2(1+cos2x)=0 ⇒ 3-2-2cos2x=0 ⇒ -2cos2x=-1. Делим обе части равенства на (-2) и получаем простейшее тригонометрическое уравнение:

14. Найдите b 5 геометрической прогрессии, если b 4 =25 и b 6 =16.

Каждый член геометрической прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

(b n) 2 =b n-1 ∙b n+1 . У нас (b 5) 2 =b 4 ∙b 6 ⇒ (b 5) 2 =25·16 ⇒ b 5 =±5·4 ⇒ b 5 =±20.

15. Найдите производную функции: f(x)=tgx-ctgx.

16. Найдите наибольшее и наименьшее значения функции y(x)=x 2 -12x+27

на отрезке .

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке , нужно найти значения этой функции на концах отрезка и в тех критических точках, которые принадлежат данному отрезку, а затем из всех полученных значений выбрать наибольшее и наименьшее.

Найдем значения функции при х=3 и при х=7, т.е. на концах отрезка.

y(3)=3 2 -12∙3+27 =9-36+27=0;

y(7)=7 2 -12∙7+27 =49-84+27=-84+76=-8.

Находим производную данной функции: y’(x)=(x 2 -12x+27)’ =2x-12=2(x-6); критическая точка х=6 принадлежит данному промежутку . Найдем значение функции при х=6.

y(6)=6 2 -12∙6+27 =36-72+27=-72+63=-9. А теперь выбираем из трех полученных значений: 0; -8 и -9 наибольшее и наименьшее: у наиб. =0; у наим. =-9.

17. Найдите общий вид первообразных для функции:

Данный промежуток – это область определения данной функции. Ответы должны начинаться с F(x), а не с f(x) – ведь мы ищем первообразную. По определению функция F(x) является первообразной для функции f(x), если выполняется равенство: F’(x)=f(x). Так что можно просто находить производные предложенных ответов, пока не получится данная функция. Строгое решение – это вычисление интеграла от данной функции. Применяем формулы:

19. Составьте уравнение прямой, содержащей медиану BD треугольника АВС, если его вершины А(-6; 2), В(6; 6) С(2; -6).

Для составления уравнения прямой нужно знать координаты 2-х точек этой прямой, а нам известны координаты только точки В. Так как медиана BD делит противолежащую сторону пополам, то точка D является серединой отрезка АС. Координаты середины отрезка есть полусуммы соответственных координат концов отрезка. Найдем координаты точки D.

20. Вычислить:

24. Площадь правильного треугольника, лежащего в основании прямой призмы, равна

Эта задача — обратная к задаче № 24 из варианта 0021.

25. Найдите закономерность и вставьте недостающее число: 1; 4; 9; 16; …

Очевидно, что это число 25 , так как нам дана последовательность квадратов натуральных чисел:

1 2 ; 2 2 ; 3 2 ; 4 2 ; 5 2 ; …

Всем удачи и успехов!

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Отбор корней при решении тригонометрических уравнений

1. Вычислите: б) arccos в) arcsin 2 д) arccos е) ar с ctg а) arcsin (-1) г) arctg (не существует); (не существует);

2. Решить уравнения: б) sin х = в) cos х = 0; г) tg x = а) cos x = - 1;

1. Отбор корней в тригонометрическом уравнении с помощью числовой окружности. Пример 1 . cos x + cos 2 x – cos 3 x = 1. Решение. cos x – cos 3 x – (1 – cos 2 x) = 0, 2sin x sin 2 x – 2sin 2 x = 0, 2sin x (sin 2 x – sin x) = 0,

Изобразим серии корней на тригонометрическом круге. 0 x y Видим, что первая серия () включает в себя корни второй серии (), а третья серия () включает в себя числа вида из корней первой серии (). 0

Пример 2. tg x + tg 2 x – tg 3 x = 0. Решение.

tg x · tg 2 x · tg 3 x = 0; Изобразим ОДЗ и серии корней на числовой окружности. 0 x y 0 Из второй серии корней () числа вида не удовлетворяют ОДЗ, а числа вида. входят в третью серию () Первая серия () так же входит в третью серию корней (), поэтому ответ можно записать одной формулой.

Пример 3. Решение. Иногда случается, что часть серии входит в ответ, а часть нет. Нанесем на числовую окружность все числа серии и исключим корни, удовлетворяющие Оставшиеся решения из серии корней можно объединить в формулу 0 x y 0 условию

2. Отбор корней в тригонометрическом уравнении алгебраическим способом Пример 1. Решение. Поскольку наибольшее значение функции y = cos t равно 1, то уравнение равносильно системе Решением уравнения является пересечение серий, то есть нам надо решить уравнение Получаем Итак,

Пример 2. Решение. Решением уравнения является пересечение серий, то есть нам надо решить уравнение где целое число. тогда Пусть Итак,

3. Отбор корней в тригонометрическом уравнении с некоторыми условиями Пример 1. Найти корни уравнения sin 2 x = cos x | cos x |, удовлетворяющие условию x . cos x (2sin x - | cos x |)=0; Решение. sin 2 x = cos x | cos x |; 2sin x · cos x - cos x | cos x |=0;

0 y x 0 y x cos x ≥ 0 cos x

Пример 2 . Найти все решения уравнения принадлежащие отрезку Решение. ОДЗ: cos 3x ≥ 0; Отметим ОДЗ на тригонометрическом круге: 0 y x Отрезку принадлежит только один промежуток из ОДЗ, а именно Решим уравнение и выберем корни, принадлежащие этому промежутку: 1 + sin 2 x = 2cos 2 3 x ; sin 2x = cos 6x; sin 2 x - cos 6 x =0;

Выберем корни, удовлетворяющие условию задачи. Из первой серии: Следовательно n =2, то есть Из второй серии: Следовательно n =5, то есть

Пример 3. Найти все корни уравнения которые удовлетворяют условию Решение. 10sin 2 x = – cos 2 x + 3; 10sin 2 x = 2sin 2 x – 1 + 3, 8sin 2 x = 2; 0 y x С помощью числовой окружности получим:

Выберем корни, удовлетворяющие условию задачи. Из первой серии: Следовательно n =0 или n =1, то есть Из второй серии: Следовательно n =0 или n =1, то есть


Простейшие тригонометрические уравнения решаются, как правило, по формулам. Напомню, что простейшими называются вот такие тригонометрические уравнения:

sinx = а

cosx = а

tgx = а

ctgx = а

х - угол, который нужно найти,
а - любое число.

А вот и формулы, с помощью которых можно сразу записать решения этих простейших уравнений.

Для синуса:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенса:

х = arctg a + π n, n ∈ Z


Для котангенса:

х = arcctg a + π n, n ∈ Z

Собственно, это и есть теоретическая часть решения простейших тригонометрических уравнений. Причём, вся!) Совсем ничего. Однако, количество ошибок по этой теме просто зашкаливает. Особенно, при незначительном отклонении примера от шаблона. Почему?

Да потому, что масса народу записывает эти буковки, не понимая их смысла совершенно! С опаской записывает, как бы чего не вышло...) С этим надо разобраться. Тригонометрия для людей, или люди для тригонометрии, в конце концов!?)

Разберёмся?

Один угол у нас будет равен arccos a, второй: -arccos a.

И так будет получаться всегда. При любом а.

Если не верите, наведите курсор мышки на картинку, или коснитесь рисунка на планшете.) Я изменил число а на какое-то отрицательное. Всё равно, один угол у нас получился arccos a, второй: -arccos a.

Следовательно, ответ можно всегда записать в виде двух серий корней:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Объединяем эти две серии в одну:

х= ± arccos а + 2π n, n ∈ Z

И все дела. Получили общую формулу для решения простейшего тригонометрического уравнения с косинусом.

Если вы понимаете, что это не какая-то сверхнаучная мудрость, а просто сокращённая запись двух серий ответов, вам и задания "С" будут по плечу. С неравенствами, с отбором корней из заданного интервала... Там ответ с плюсом/минусом не катит. А если отнестись к ответу делово, да разбить его на два отдельных ответа, всё и решается.) Собственно, для этого и разбираемся. Что, как и откуда.

В простейшем тригонометрическом уравнении

sinx = а

тоже получается две серии корней. Всегда. И эти две серии тоже можно записать одной строчкой. Только эта строчка похитрее будет:

х = (-1) n arcsin a + π n, n ∈ Z

Но суть остаётся прежней. Математики просто сконструировали формулу, чтобы вместо двух записей серий корней, сделать одну. И всё!

Проверим математиков? А то мало ли...)

В предыдущем уроке подробно разобрано решение (безо всяких формул) тригонометрического уравнения с синусом:

В ответе получились две серии корней:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Если мы будем решать это же уравнение по формуле, получим ответ:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Вообще-то, это недоделанный ответ.) Ученик обязан знать, что arcsin 0,5 = π /6. Полноценный ответ будет:

х = (-1) n π /6 + π n, n ∈ Z

Тут возникает интересный вопрос. Ответ через х 1 ; х 2 (это правильный ответ!) и через одинокий х (и это правильный ответ!) - одно и то же, или нет? Сейчас узнаем.)

Подставляем в ответ с х 1 значения n =0; 1; 2; и т.д., считаем, получаем серию корней:

х 1 = π/6; 13π/6; 25π/6 и так далее.

При такой же подстановке в ответ с х 2 , получаем:

х 2 = 5π/6; 17π/6; 29π/6 и так далее.

А теперь подставляем значения n (0; 1; 2; 3; 4...) в общую формулу для одинокого х . Т.е возводим минус один в нулевую степень, затем в первую, вторую, и т.д. Ну и, разумеется, во второе слагаемое подставляем 0; 1; 2 3; 4 и т.д. И считаем. Получаем серию:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 и так далее.

Вот всё и видно.) Общая формула выдаёт нам точно такие же результаты, что и два ответа по отдельности. Только все сразу, по порядочку. Не обманули математики.)

Формулы для решения тригонометрических уравнений с тангенсом и котангенсом тоже можно проверить. Но не будем.) Они и так простенькие.

Я расписал всю эту подстановку и проверку специально. Здесь важно понять одну простую вещь: формулы для решения элементарных тригонометрических уравнений есть, всего лишь, краткая запись ответов. Для этой краткости пришлось вставить плюс/минус в решение для косинуса и (-1) n в решение для синуса.

Эти вставки никак не мешают в заданиях, где нужно просто записать ответ элементарного уравнения. Но если надо решать неравенство, или далее нужно что-то делать с ответом: отбирать корни на интервале, проверять на ОДЗ и т.п, эти вставочки могут запросто выбить человека из колеи.

И что делать? Да либо расписать ответ через две серии, либо решать уравнение/неравенство по тригонометрическому кругу. Тогда исчезают эти вставочки и жизнь становится легче.)

Можно подвести итоги.

Для решения простейших тригонометрических уравнений существуют готовые формулы ответов. Четыре штуки. Они хороши для мгновенной записи решения уравнения. Например, надо решить уравнения:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Запросто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Одной левой: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Если вы, блистая знаниями, мгновенно пишете ответ:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блистаете вы уже, это... того... из лужи.) Правильный ответ: решений нет. Не понимаете, почему? Прочитайте, что такое арккосинус. Кроме того, если в правой части исходного уравнения стоят табличные значения синуса, косинуса, тангенса, котангенса, - 1; 0; √3; 1/2; √3/2 и т.п. - ответ через арки будет недоделанным. Арки нужно обязательно перевести в радианы.

А если уж вам попалось неравенство, типа

то ответ в виде:

х πn, n ∈ Z

есть редкая ахинея, да...) Тут надо по тригонометрическому кругу решать. Чем мы и займёмся в соответствующей теме.

Для тех, кто героически дочитал до этих строк. Я просто не могу не оценить ваши титанические усилия. Вам бонус.)

Бонус:

При записи формул в тревожной боевой обстановке, даже закалённые учёбой ботаны частенько путаются, где πn, а где 2π n. Вот вам простой приёмчик. Во всех формулах стоит πn. Кроме единственной формулы с арккосинусом. Там стоит 2πn. Два пиэн. Ключевое слово - два. В этой же единственной формуле стоят два знака в начале. Плюс и минус. И там, и там - два.

Так что, если вы написали два знака перед арккосинусом, легче вспомнить, что в конце будет два пиэн. А ещё наоборот бывает. Пропустит человек знак ± , доберётся до конца, напишет правильно два пиэн, да и спохватится. Впереди-то два знака! Вернётся человек к началу, да ошибку-то и исправит! Вот так.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.