Построение синусоиды по точкам. Преобразование графиков функций

Преобразование графиков функций

В этой статье я познакомлю вас с линейными преобразованиями графиков функций и покажу, как с помощью этих преобразований из графика функции получить график функции

Линейным преобразованием функции называется преобразование самой функции и/или ее аргумента к виду , а также преобразование, содержащее модуль аргумента и/или функции.

Наибольшие затруднения при построении графиков с помощью линейных преобразований вызывают следующие действия:

  1. Вычленение базовой функции, собственно, график которой мы и преобразовываем.
  2. Определения порядка преобразований.

И менно на этих моментах мы и остановимся подробнее.

Рассмотрим внимательно функцию

В ее основе лежит функция . Назовем ее базовой функцией .

При построении графика функции мы совершаем преобразования графика базовой функции .

Если бы мы совершали преобразования функции в том же порядке, в каком находили ее значение при определенном значении аргумента, то

Рассмотрим какие виды линейных преобразований аргумента и функции существуют, и как их выполнять.

Преобразования аргумента.

1. f(x) f(x+b)

1. Строим график фунции

2. Сдвигаем график фунции вдоль оси ОХ на |b| единиц

  • влево, если b>0
  • вправо, если b<0

Построим график функции

1. Строим график функции

2. Сдвигаем его на 2 единицы вправо:


2. f(x) f(kx)

1. Строим график фунции

2. Абсциссы точек графика делим на к, ординаты точек оставляем без изменений.

Построим график функции .

1. Строим график функции

2. Все абсциссы точек графика делим на 2, ординаты оставляем без изменений:


3. f(x) f(-x)

1. Строим график фунции

2. Отображаем его симметрично относительно оси OY.

Построим график функции .

1. Строим график функции

2. Отображаем его симметрично относительно оси OY:


4. f(x) f(|x|)

1. Строим график функции

2. Часть графика, расположенную левее оси ОY стираем, часть графика, расположенную правее оси ОY Достраиваем симметрично относительно оси OY:

График функции выглядит так:


Построим график функции

1. Строим график функции (это график функции , смещенный вдоль оси ОХ на 2 единицы влево):


2. Часть графика, расположенную левее оси OY (x<0) стираем:

3. Часть графика, расположенную правее оси OY (x>0) достраиваем симметрично относительно оси OY:


Важно! Два главных правила преобразования аргумента.

1. Все преобразования аргумента совершаются вдоль оси ОХ

2. Все преобразования аргумента совершаются "наоборот" и "в обратном порядке".

Например, в функции последовательность преобразований аргумента такая:

1. Берем модуль от х.

2. К модулю х прибавляем число 2.

Но построение графика мы совершали в обратном порядке:

Сначала выполнили преобразование 2. - сместили график на 2 единицы влево (то есть абсциссы точек уменьшили на 2, как бы "наоборот")

Затем выполнили преобразование f(x) f(|x|).

Коротко последовательность преобразований записывается так:



Теперь поговорим о преобразовании функции . Преобразования совершаются

1. Вдоль оси OY.

2. В той же последовательности, в какой выполняются действия.

Вот эти преобразования:

1. f(x)f(x)+D

2. Смещаем его вдоль оси OY на |D| единиц

  • вверх, если D>0
  • вниз, если D<0

Построим график функции

1. Строим график функции

2. Смещаем его вдоль оси OY на 2 единицы вверх:


2. f(x)Af(x)

1. Строим график функции y=f(x)

2. Ординаты всех точек графика умножаем на А, абсциссы оставляем без изменений.

Построим график функции

1. Построим график функции

2. Ординаты всех точек графика умножим на 2:


3. f(x)-f(x)

1. Строим график функции y=f(x)

Построим график функции .

1. Строим график функции .

2. Отображаем его симметрично относительно оси ОХ.


4. f(x)|f(x)|

1. Строим график функции y=f(x)

2. Часть графика, расположенную выше оси ОХ оставляем без изменений, часть графика, расположенную ниже оси OX, отображаем симметрично относительно этой оси.

Построим график функции

1. Строим график функции . Он получается смещением графика функции вдоль оси OY на 2 единицы вниз:


2. Теперь часть графика, расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:


И последнее преобразование, которое, строго говоря, нельзя назвать преобразованием функции, поскольку результат этого преобразования функцией уже не является:

|y|=f(x)

1. Строим график функции y=f(x)

2. Часть графика, расположенную ниже оси ОХ стираем, затем часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

Построим график уравнения

1. Строим график функции :


2. Часть графика, расположенную ниже оси ОХ стираем:


3. Часть графика, расположенную выше оси ОХ достраиваем симметрично относительно этой оси.

И, наконец, предлагаю вам посмотреть ВИДЕОУРОК в котором я показываю пошаговый алгоритм построения графика функции

График этой функции выглядит так:


§ 11. Графики синуса и косинуса

Повторить: § 5. Часы, или современный взгляд на тригонометрию.

Построим график функции y = sin x. При этом нам опять при-

годятся часы из § 5.

Если x = 0, то, очевидно, y = 0. Когда x воз-

растает от 0 до π/2, число sin x возрастает от 0 до

1 (представьте себе, как меняется ордината кон-

ца стрелки на наших фирменных часах). Участок

графика для x от 0 до π/2 изображен на рис. 11.1 .

При малых x наш график близок к прямой

y = x: вспомним, что при малых x верна при-

ближенная формула sin x ≈ x. Можно сказать,

что прямая y = x касается кривой с уравнением

y = sin x в точке (0; 0). Заметим также, что наш участок графика

расположен ниже этой прямой: ведь для острых углов x, измерен-

ных в радианах, выполнено неравенство sin x < x.

Чем ближе x к π/2, тем более полого идет наша кривая. Это

происходит потому, что проекция конца стрелки на ось ординат,

колеблясь по отрезку [−1; 1], быстрее всего движется в середине

отрезка и замедляется у его краев: мы это уже обсуждали в § 5.

от π до 3π/2, sin x уменьшается от 0 до −1, а когда x возрастает от 3π/2 до 2π, возрастает от −1 до 0. Итак, участок графика для 0 6 x 6 2π готов (рис. 11.2 б). Заметим, кстати, что кривая на рис11.2 а симметрична относительно вертикальной прямой с уравнением x = π/2. В самом деле, формула приведения sin(π/2 − x) = sin x показывает, что точки с абсциссами x и π − x имеют на графике одинаковые ординаты и, стало быть, симметричны относительно прямой x = π/2 (рис.11.3 а).

Задача 11.1. Запишите уравнение прямой, касающейся графика функции y = sin x в точке с координатами (π; 0).

Кривая на рис 11.2 б центрально симметрична относительно точки с координатами (π; 0); это следует из другой формулы приведения: sin(2π − x) = − sin x (рис.11.3 б).

После того, как у нас есть участок графика функции y = sin x для 0 6 x 6 2π, весь график строится уже просто. В самом деле, когда конец стрелки прошел путь 2π, стрелка вернулась в исходное положение; при дальнейшем движении все будет повторяться. Значит, график будет состоять из таких же кусков, как на рис 11.2 б. Окончательно график функции y = sin x выглядит так, как на рис.11.4 . При этом участки графика при x , , [−2π; 0],. . . получаются из графика на рис11.2 б сдвигом вдоль оси абсцисс на 2π, 4π, −2π,. . . соответственно. Это - просто переформулировка того факта, что функция y = sin x имеет период 2π.

Рис. 11.4. y = sin x.

Рис. 11.5. y = cos x.

Теперь построим график функции y = cos x. Можно было бы строить его так же, как мы строили график синуса. Мы, однако, изберем другой путь, который позволит использовать уже имеющуюся у нас информацию.

Именно, воспользуемся формулой приведения sin(x + π/2) = = cos x. Эту формулу можно понимать так: функция y = cos x принимает те же значения, что и функция y = sin x, но на π/2 раньше. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = cos x = sin(x + π/2) принимает это же значение уже при x = 0. На графике это означает следующее: для каждой точки графика y = sin x есть точка графика y = cos x, у которой ордината та же, а абсцисса на π/2 меньше (рис. 11.5 ). Стало быть, график y = cos x получится, если сдвинуть график y = sin x вдоль оси абсцисс на π/2 влево. На рис.11.5 график функции y = cos x изображен сплошной кривой.

Итак, мы выяснили, что график косинуса получается преобра-

зованием (сдвигом) из графика синуса. Случаи, когда график одной функции можно получить преобразованием из графика другой функции, интересны и сами по себе, поэтому скажем о них несколько слов.

Как, например, будет выглядеть график функции y = 2 sin x? Ясно, что ординаты точек этого графика получаются из ординат соответствующих точек графика y = sin x умножением на 2, так что наш график изобразится сплошной кривой на рис. 11.6 . Можно сказать, что график y = 2 sin x получается из графика y = sin x растяжением в два раза вдоль оси ординат.

Рис. 11.6. y = 2 sin x.

Рис. 11.7. y = sin 2x.

Теперь построим график функции y = sin 2x. Легко понять,

Рис. 11.8. y = sin(2x + π/3).

что функция y = sin 2x принимает те же самые значения, что и функция y = sin x, но при в два раза меньших значениях x. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = sin 2x - уже при x = π/4; иными словами, чтобы получить график y = sin 2x, надо абсциссы всех точек графика y = sin x уменьшить в два раза, а ординаты оставить неизменными. То, что получается, изображено на рис. 11.7 . Можно сказать, что график y = sin 2x (сплошная линия на рис.11.7 ) получается из графика y = sin x сжатием в 2 раза к оси ординат.

Попробуем еще построить график функции y = sin(2x + π/3). Понятно, что он должен получаться каким-то преобразованием из графика y = sin 2x. На первый взгляд может показаться, что это преобразование - сдвиг влево на π/3 вдоль оси абсцисс, по аналогии с тем, что изображено на рис.11.5 . Однако, если бы это было так, то вышло бы, например, что функция y = sin(2x + π/3) принимает значение 1 при x = π/4 − π/3 = π/12, что не соответствует действительности (проверьте!). Правильно рассуждать так: sin(2x + π/3) = sin 2(x + π/6), так что функция y = sin(2x+π/3) принимает те же значения, что и функция y = sin 2x, но на π/6 раньше. Так что сдвиг влево - не на π/3, а на π/6 (рис.11.8 ).

Кривые, являющиеся графиками функций y = a sin bx, где a 6= 0, b 6= 0, называются синусоидами. Заметим, что кривой «косинусоида» вводить не надо: как мы видели, график косинуса - это та же кривая, что и график синуса, только иначе расположен-

ная относительно осей координат.

Задача 11.2. Каковы координаты точек, помеченных на рис. 11.8 вопросительными знаками?

Задача 11.3. Возьмите свечу, тонкий лист бумаги и острый нож. Намотайте лист бумаги на свечу в несколько слоев и аккуратно разрежьте эту свечу вместе с бумагой наискосок ножом. Теперь разверните бумагу. Вы увидите, что она оказалась разрезанной по волнистой линии. Докажите, что эта волнистая линия является синусоидой.

Задача 11.4. Постройте графики функций:

г) y = 3 cos 2x;

а) y = − sin x; б)

в) y = cos(x/2);

ж) y = sin(πx). д)

Замечание. Если вы строите графики тригонометрических функций на клетчатой бумаге, удобно выбрать немного разные масштабы по осям, с тем чтобы на оси абсцисс числу π соответствовало целое число клеточек. Например, часто выбирают такой масштаб: по оси ординат отрезок длины 1 занимает две клеточки, по оси абсцисс отрезок длины π занимает 6 клеточек.

Задача 11.5. Постройте графики функций:

а) y = arcsin x; б) y = arccos x.

Посмотрим, как выглядят на графиках уже известные нам решения уравнений sin x = a и cos x = a. Эти решения являются абсциссами точек пересечения горизонтальной прямой y = a с графиком функций y = sin x (соответственно y = cos x). На рис. 11.9 ,11.10 хорошо видны две серии решений, получающихся при −1 < a < 1.

По графикам синуса и косинуса видно, на каких промежутках эти функции возрастают, а на каких убывают. Ясно, например, что функция y = sin x возрастает на отрезках [−π/2; π/2],

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").

Из графиков видно что:

  1. Графики синуса и косинуса колеблются в пределах между -1 и 1
  2. Кривая косинуса имеет ту же форму, что и кривая синуса, но сдвинута относительно нее на 90 o
  3. Кривые синуса и косинуса непрерывны и повторяются с периодом 360 o , кривая тангенса имеет разрывы и повторяется с периодом 180 o .

На рис. слева показаны перпендикулярные оси ХХ" и YY"; пересекающиеся в начале координат О. При работе с графиками измерения вправо и вверх от О считаются положительными, влево и вниз от О - отрицательными. Пусть ОА свободно вращается относительно О. При повороте ОА против часовой стрелки измеряемый угол считается положительным, а при повороте по часовой стрелке - отрицательным.


График. Положительное или отрицательное
направление при движении по окружности.

Пусть ОА вращается против часовой стрелки таким образом, что Θ 1 - любой угол в первом квадранте, и построим перпендикуляр АВ для получения прямоугольного треугольника ОАВ на рис. слева. Поскольку все три стороны треугольника положительны, тригонометрические функции синус, косинус и тангенс в первом квадранте будут положительны. (Отметим, что длина ОА всегда положительна, поскольку является радиусом круга.)
Пусть ОА вращается дальше таким образом, что Θ 2 - любой угол во втором квадранте, и построим АС так, чтобы образовался прямоугольный треугольник ОАС. Тогда sin Θ 2 =+/+ = +; cos Θ 2 =+/- = -; tg Θ 2 =+/- = -. Пусть ОА вращается дальше таким образом, что Θ 3 - любой угол в третьем квадранте, и построим АD так, чтобы образовался прямоугольный треугольник ОАD. Тогда sin Θ 3 = -/+ = -; cos Θ 3 = -/+ = -; tg Θ 3 = -/- =+ .


График. Поcтроение углов в
различных квадрантах.

Пусть ОА вращается дальше таким образом, что Θ 4 - любой угол в четвертом квадранте, и построим АЕ так, чтобы образовался прямоугольный треугольник ОАЕ. Тогда sin Θ 4 = -/+= -; cos Θ 4 =+/+=+; tg Θ 4 = -/+= -.

В первом квадранте все тригонометрические функции имеют положительные значения, во втором положителен только синус, в третьем - только тангенс, в четвертом только косинус, что и показано на рис. слева.


Знание углов произвольной величины необходимо при нахождении, например, всех углов между 0 o и 360 o , синус которых равен, скажем, 0,3261. Если ввести в калькулятор 0,3261 и нажать кнопку sin -1 , получим ответ 19,03 o . Однако существует второй угол между 0 o и 360 o , который калькулятор не покажет. Синус также положителен во втором квадранте. Другой угол показан на рис. ниже как угол Θ, где Θ=180 o - 19,03 o = 160,97 o . Таким образом, 19,03 o и 160,97 o - это углы в диапазоне от 0 o до 360 o , синус которых равен 0,3261.

Будьте внимательны! Калькулятор дает только одно из этих значений. Второе значение следует определить согласно теории углов произвольной величины.

Пример 1

Найти все углы в диапазоне от 0 o до 360 o , синус которых равен -0,7071

Решение:
Углы, синус которых равен -0,7071 o находятся в третьем и четвертом квадранте, поскольку синус отрицателен в этих квадрантах (смотри рис. слева).

График. Нахождение всех углов по
заданному значению синуса (пример)


Из следующего рисунка Θ = arcsin 0,7071 = 45 o . Два угла в диапазоне от 0 o до 360 o , синус которых равен -0,7071, это 180 o +45 o =225 o и 360 o - 45 o = 315 o .


Примечание. Калькулятор дает только один ответ.
График. Нахождение всех углов по
заданному значению синуса (пример)

Пример 2

Найти все углы между 0 o и 360 o , тангенс которых равен 1, 327.

Решение:
Тангенс положителен в первом и третьем квадрантах - рис. слева.
График. Нахождение всех углов по

Из рис ниже Θ = arctg1,327= 53 o .
Два угла в диапазоне от 0 o до 360 o , тангенс которых равен 1,327, это 53 o и 180 o + 53 o , т.е. 233 o .
График. Нахождение всех углов по
заданному значению тангенса (пример)

Пусть ОR на рис. слева- это вектор единичной длины, свободно вращающийся против часовой стрелки вокруг О. За один оборот получается круг, показанный на рис. и разделенный секторами по 15 o . Каждый радиус имеет горизонтальную и вертикальную составляющую. Например, для 30 o вертикальная составляющая - это ТS, а горизонтальная - ОS.

Из определения тригонометрических функций
sin30 o =TS/TO=TS/1, т.е. TS= sin30 o и cos30 o =OS/TO=OS/1, т.e. OS=cos30 o

Вертикальную составляющую TS можно перенести на график в виде T"S", что равно значению, соответствующему углу 30 o на графике зависимости y от угла х. Если все вертикальные составляющие, подобно TS, перенести на график, то получится синусоида, показанная на рис. выше.


Если все горизонтальные составляющие, подобные OS, спроецировать на график зависимости у от угла х, получится косинусоида. Эти проекции легко визуализировать, перерисовывая круг с радиусом OR и началом отсчета углов от вертикали, как показано на рисунке слева.
Из рис. слева видно, что синусоида имеет ту же форму, что и косинусоида, но смещенная на 90 o .




Периодические функции и период
Каждый из графиков функций, показанных на четырех рис. выше, повторяется при увеличении угла А, поэтому их называют периодическими функциями .
Функции y=sinA и y=cosA повторяются через каждые 360 o (или 2π радиан), поэтому 360 o называется периодом этих функций. Функции y=sin2A и y=cos2A повторяются через каждые 180 o (или π радиан),поэтому 180 o - это период для данных функций.
В общем случае если y=sinpA и y=cospA (где р - константа), то период функции равен 360 o /p (или 2π/p радиан). Следовательно, если y=sin3A, то период этой функции равен 360 o /3= 120 o , если y=cos4A, то период этой функции равен 360 o /4= 90 o .

Амплитуда
Амплитудой называется максимальное значение синусоиды. Каждый из графиков 1-4 имеет амплитуду +1 (т.е. они колеблются между +1 и -1). Однако, если y=4sinA, каждая из величин sinA умножается на 4, таким образом, максимальная величина амплитуды - 4. Аналогично для y=5cos2A амплитуда равна 5, а период - 360 o /2= 180 o .

Пример 3.
Построить y=3sin2A в диапазоне от А= 0 o до А=360 o .

Решение:
Амплитуда =3, период = 360 o /2 =180 o .

Пример 4.
Построить график y=4cos2x в диапазоне от х=0 o до х=360 o

Решение:
Амплитуда = 4. период = 360 o /2 =180 o .


Углы запаздывания и опережения
Кривые синуса и косинуса не всегда начинаются в 0 o . Чтобы учесть это обстоятельство, периодическая функция представляется в виде y=sin(A± α), где α - сдвиг фазы относительно y=sinA и y=cosA.

Составив таблицу значений, можно построить график функции y=sin(A-60 o), показанный на рис. слева. Если кривая y=sinA начинается в 0 o , то кривая y=sin(A-60 o) начинается в 60 o (т.е. ее нулевое значение на 60 o правее). Таким образом, говорят, что y=sin(A-60 o) запаздывает относительно y=sinA на 60 o .
График. y=sin(A-60 o) (синусоида).

Составив таблицу значений, можно построить график функции y=cos(A+45 o), показанный на рис. ниже.
Если кривая y=cosA начинается в 0 o , то кривая y=cos(A+45 o) начинается на 45 o левее (т.е. ее нулевая величина находится на 45 o раньше).
Таким образом, говорят, что график y=cos(A+45 o) опережает график y=cosA на 45 o .
График. y=cos(A+45 o) (косинусоида).

В общем виде, график y=sin(A-α) запаздывает относительно y=sinAна угол α.
Косинусоида имеет ту же форму, что и синусоида, но начинается на 90 o левее, т.е. опережает ее на 90 o . Следовательно, cosA=sin(A+90 o).

Пример 5.
Построить график y=5sin(A+30 o) в диапазоне от А=0 o до А=360 o


Решение:
Амплитуда = 5, период = 360 o /1 = 360 o .
5sin(A+30 o) опережает 5sinA на 30 o т.е. начинается на 30 o раньше.
График y=5sin(A+30 o) (синусоида).

Пример 6.
Построить график y=7sin(2A-π/3) в диапазоне от А=0 o до А=360 o .

Решение:
Амплитуда = 7, период =2π/2= π радиан
В общем случае y=sin(pt-α) запаздывает относительно y=sinpt на α/p , следовательно 7sin(2A-π/3) запаздывает относительно 7sin2A на (π/3)/2, т.е. на π/6 радиан или на 30 o

Синусоида вида Asin(ωt±α). Фазовый угол. Сдвиг по фазе.

Пусть OR на рис. слева представляет собой вектор, свободно вращающийся против часовой стрелки вокруг О со скоростью ω радиан/с. Вращающийся вектор называется фазовым вектором . Через время t секунд OR повернется на угол ωt радиан (на рис. слева это угол TOR). Если перпендикулярно к OR построить ST, то sinωt=ST/OT, т.e. ST=OTsinωt.
Если все подобные вертикальные составляющие спроецировать на график зависимости у от ωt, получится синусоида с амплитудой OR.

Если фазовый вектор OR делает один оборот (т.е. 2π радиан) за Т секунд, то угловая скорость ω=2π/Т рад/с, откуда
Т=2π/ ω (с), где
Т - это период
Число полных периодов, проходящих за 1 секунду, называется частотой f.
Частота = (количество периодов)/(секунда) = 1/ T = ω/2π Гц, т.е. f= ω/2π Гц
Следовательно, угловая скорость
ω=2πf рад/с.

Если в общем виде синусоидальная функция выглядит, как y=sin(ωt± α), то
А - амплитуда
ω - угловая скорость
2π/ ω - период Т, с
ω/2π - частота f, Гц
α - угол опережения или запаздывания (относительно y=Аsinωt) в радианах, он называется также фазовым углом.

Пример 7.
Переменный ток задается как i=20sin(90πt+0,26) ампер. Определить амплитуду, период, частоту и фазовый угол (в градусах)

Решение:
i=20sin(90πt+0,26)А, следовательно,
амплитуда равна 20 А
угловая скорость ω =90π, следовательно,
период Т = 2π/ ω = 2π/ 90π = 0,022 с = 22мс
частота f = 1/Т = 1/0,022 = 45,46 Гц
фазовый угол α = 0,26 рад. = (0,26*180/π) o = 14,9 o .

Пример 8.
Колебательный механизм имеет максимальное смещение 3 м и частоту 55 Гц. Во время t=0 смещение составляет 100см. Выразить смещение в общем виде Аsin(ωt± α).

Решение
Амплитуда = максимальное смещение = 3м
Угловая скорость ω=2πf = 2π(55) = 110 πрад./с
Следовательно, смещение 3sin(110πt + α) м.
При t=0 смещение = 100см=1м.
Следовательно, 1= 3sin(0 + α), т.е. sinα=1/3=0,33
Следовательно α=arcsin0,33=19 o
Итак, смещение равно 3sin(110 πt + 0,33).

Пример 9.
Значение мгновенного напржения в схеме переменного тока в любые t секунд задается в виде v=350sin(40πt-0,542)В. Найти:
а) Амплитуду, период, частоту и фазовый угол (в градусах)
б) значение напряжения при t =0
в) значение напряжения при t =10 мс
г) время, за которое напряжение впервые достигнет значения 200 В.
Решение :
а) Амплитуда равна 350 В, угловая скорость равна ω=40π
Следовательно,
период Т=2π/ ω=2π/40π=0,05 с =50мс
частота f=1/Т=1/0,05=20 Гц
фазовый угол = 0,542 рад (0,542*180/π) = 31 o с запаздыванием относительно v=350sin(40πt)
б) Если t =0, то v=350sin(0-0,542)=350sin(-31 o)=-180,25 В
в) Если t =10 мс, то v=350sin(40π10/10 3 -0,542)=350sin(0,714)=350sin41 o =229,6 В
г) Если v=200 И, то 200=350sin(40πt-0,542) 200/350=sin(40πt-0,542)

График. Колебательный механизм
(пример, синусоида).

v=350sin(40πt-0,542) Следовательно, (40πt-0,542)=arcsin200/350=35 o или 0,611 рад.
40πt= 0,611+0,542=1,153.
Следовательно, если v=200В, то время t=1,153/40π=9,179 мс