Периодическая функция как определить. Периодические функции

Аргумента x, то она называется периодической, если есть число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции - не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность - вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) - с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) - тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.

Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Например sin(2x) - периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз

Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 - рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй - 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π - иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Алгебра и начала анализа, 10 класс (профильный уровень) А.Г.Мордкович, П.Е.Семёнов Учитель Волкова С.Е.

Определение 1 Говорят, что функция y = f (x), x ∈ X имеет период Т, если для любого х ∈ Х выполняется равенство f (x – T) = f (x) = f (x + T) . Если функция с периодом Т определена в точке х, то она определена и в точках х + Т, х – Т. Любая функция имеет период, равный нулю при Т = 0 получим f(x – 0) = f(x) = f(x + 0) .

Определение 2 Функцию, имеющую отличный от нуля период Т, называют периодической. Если функция y = f (x), x ∈ X имеет период Т, то любое число, кратное Т (т.е. число вида кТ, к ∈ Z), также является её периодом.

Доказательство Пусть 2Т – период функции. Тогда f(x) = f(x + T) = f((x + T) +T) = f(x +2T), f(x) = f(x - T) = f((x - T) -T) = f(x - 2T). Аналогично доказывается, что f(x) = f(x + 3 T) = f(x - 3 T), f(x) = f(x + 4 T) = f(x - 4 T) и т.д. Итак, f(x - кТ) = f(x) = f(x + к T)

Наименьший период среди положительных периодов периодической функции называется основным периодом данной функции.

Особенности графика периодической функции Если Т – основной период функции y = f(x) , то достаточно: построить ветвь графика на одном из промежутков длины Т выполнить параллельный перенос этой ветви вдоль оси х на ±Т, ±2Т, ±3Т и т.д. Обычно выбирают промежуток с концами в точках

Свойства периодических функций 1.Если f(x) – периодическая функция с периодом Т, то функция g(x) = A f(kx + b), где к > 0 , также является периодической с периодом Т 1 = Т/к. 2.Пусть функция f 1 (x) и f 2 (x) определены на всей числовой оси и являются периодическими с периодами Т 1 > 0 и Т 2 >0 . Тогда при Т 1 /Т 2 ∈ Q функция f(x) = f(x) +f 2 (x) – периодическая функция с периодом Т, равным наименьшему общему кратному чисел Т 1 и Т 2 .

Примеры 1. Периодическая функция y = f(x) определена для всех действительных чисел. Её период равен 3 и f(0) =4 . Найти значение выражения 2f(3) – f(-3). Решение. Т = 3 , f(3) =f(0+3) = 4 , f(-3) = f(0–3) =4, f(0) = 4. Подставив полученные значения в выражение 2f(3) – f(-3) , получим 8 - 4 =4 . Ответ: 4 .

Примеры 2. Периодическая функция y = f(x) определена для всех действительных чисел. Её период равен 5, а f(-1) = 1. Найти f(-12), если 2f(3) – 5f(9) = 9. Решение Т = 5 F(-1) = 1 f(9) = f(-1 +2T) = 1⇨ 5f(9) = 5 2f(3) = 9 + 5f(9) = 14 ⇨f(3)= 7 F(-12) = f(3 – 3T) = f(3) = 7 Ответ:7.

Используемая литература А.Г.Мордкович, П.В.Семёнов. Алгебра и начала анализа (профильный уровень), 10 класс А.Г.Мордкович, П.В.Семёнов. Алгебра и начала анализа (профильный уровень), 10 класс. Методическое пособие для учителя


По теме: методические разработки, презентации и конспекты

Периодический закон и периодическая система Д.И. Менделеева.

Обощающий урок по данной теме проводится в виде игры, с использованием элементов технологии педагогических мастерских....

Внеклассное мероприятие "Периодический закон и периодическая система химических элементов Д.И. Менделеева"

Внеклассное мероприятие раскрывает историю создания периодического закона и периодической системы Д.И. Менделеева. Информация изложена в стихотворной форме, которая способствует быстрому запоминанию м...

Приложение к внеклассному мероприятию "Периодический закон и периодическая система химических элементов Д.И. Менделеева"

Открытию закона предшествовала длительная и напряженная научная работа Д.И. Менделеева в течение 15 лет, а дальнейшему его углублению было отдано еще 25 лет....

В обычных школьных задачах доказать периодичность той или иной функции обычно нетрудно: так, чтобы убедиться, что функция $y=sin\frac34 x+sin\frac27 x$ является периодической, достаточно просто отметить, что произведение $T=4\times7\times 2\pi$ является ее периодом: если мы прибавим к х число Т, то это произведение «съест» оба знаменателя и под знаком синуса окажутся лишними только целые кратные числа $2\pi$, которые «съест» сам синус.

Но доказательство непериодичности той или иной функции непосредственно по определению может оказаться совсем не простым. Так, для доказательства непериодичности рассмотренной выше функции $y=\sin x^2$ можно выписать равенство $sin(x+T)^2=\sin x^2$, но не решать по привычке это тригонометрическое уравнение, а догадаться подставить в него х=0, после чего дальнейшее получится почти автоматически: $\sin T^2=0$, $T^2=k\pi$, где k - некоторое целое число, большее 0, т.е. $T=\sqrt {k\pi}$, а если теперь догадаться подставить в него $x=\sqrt {\pi}$, то получится, что $\sin(\sqrt{\pi}+\sqrt{k\pi})=0$, откуда $\sqrt{\pi}+\sqrt{k\pi}=n\pi$, $1+\sqrt{k}=n\sqrt{\pi}$, $1+k+2\sqrt{k}=n^2\pi$, $2\sqrt{k}=n^2\pi-1-k=n^2\pi=m$, $4k=n^4{\pi}^2+2mn^2x+m^2$, и таким образом, число р является корнем уравнения $n^4x^2+2mn^2\pi+m^2-4k=0$, т.е. является алгебраическим, что неверно: $\pi$ является, как мы знаем, трансцендентным, т.е. не является корнем никакого алгебраич­ской уравнения с целыми коэффициентами. Впрочем, в будущем мы получим гораздо более простое доказательство этого утверждения - но уже с помощью средств математического анализа.

При доказательстве непериодичности функций часто помогает элементарный логический трюк: если все периодические функции обладают некоторым свойством, а данная функция им не обладает, то она, естественно, не является периодической . Так, периодическая функция всякое свое значение принимает бесконечно много раз, и поэтому, например, функция $y=\frac{3x^2-5x+7}{4x^3-x+2}$ не является периодической, так как значение 7 она принимает только в двух точках. Часто для доказательства непериодичности удобно использовать особенности ее области определения , а для нахождения нужного свойства периодических функций иногда приходится проявлять определенную фантазию.

Заметим еще, что очень часто на вопрос, что же такое непериодическая функция, приходится слышать ответ в стиле, о котором мы говорили в связи с четными и нечетными функциями , - это когда $f(x+T)\neq f(x)$, что, конечно же, недопустимо.

А правильный ответ зависит от конкретного определения периодической функции, и, исходя из данного выше определения, можно, конечно, сказать, что функция является непериодической, если она не имеет ни одного периода, но это будет «плохое» определение, которое не дает направления доказательства непериодичности . А если его расшифровать далее, описав, что значит предложение «функция f не имеет ни одного периода», или, что то же самое, «никакое число $T \neq 0$ не является периодом функции f», то получим, что функция f не является периодической в том и только в том случае, когда для всякого $T \neq 0$ существует число $x\in D(f)$ такое, что либо хотя бы одно из чисел $x+T$ и $x-T$ не принадлежит D(f), либо $f(x+T)\neq f(x)$.

Можно сказать и иначе: «Существует число $x\in D(f)$ такое, что равенство $f(x+T) = f(x)$ не выполняется» - это равенство может не выполняться по двум причинам: или оно не имеет смысла , т.е. одна из его частей не оп­ределена, или - в противном случае, быть неверным. Для интереса добавим, что языковой эффект, о котором мы говорили выше, здесь проявляется тоже: для равенства «не быть верным» и «быть неверным» - не одно и то же - равенство еще может не иметь смысла.

Детальное выяснение причин и последствий этого языкового эффекта в действительности является предметом не математики, а теории языка, лингвистики, точнее, ее особого раздела: семантики - науки о смысле, где, впрочем, эти вопросы являются весьма сложными и не имеют однозначного решения. А математика, в том числе и школьная, вынуждена мириться с этими трудностями и преодолевать языковые «неурядицы» - пока и поскольку она использует, наряду с символическим, и естественный язык.

По школьным урокам математики всякий помнит график синуса, равномерными волнами уходящий вдаль. Аналогичным свойством - повторяться через определенный интервал - владеют и многие другие функции. Они именуются периодическими. Периодичность - дюже значимое качество функции, зачастую встречающееся в разных задачах. Следственно благотворно уметь определять, является ли функция периодической.

Инструкция

1. Если F(x) - функция довода x, то она именуется периодической, если есть такое число T, что для всякого x F(x + T) = F(x). Это число T и именуется периодом функции.Периодов может быть и несколько. Скажем, функция F = const для всяких значений довода принимает одно и то же значение, а потому всякое число может считаться ее периодом.Традиционно математика волнует минимальный не равный нулю период функции. Его для краткости и называют примитивно периодом.

2. Типичный пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период идентичен и равен 2?, то есть sin(x) = sin(x + 2?) = sin(x + 4?) и так дальше. Впрочем, разумеется, тригонометрические функции - не исключительные периодические.

3. Касательно примитивных, базовых функций исключительный метод установить их периодичность либо непериодичность - вычисления. Но для трудных функций теснее есть несколько примитивных правил.

4. Если F(x) - периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F?(x) - тоже периодическая функция с периодом T. Чай значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а от того что первообразная периодично повторяется, то должна повторяться и производная. Скажем, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется постоянно.Впрочем обратное не неизменно правильно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.

5. Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Скажем sin(2x) - периодическая функция, и ее период равен?. Наглядно это дозволено представить так: умножая x на какое-либо число, вы как бы сжимаете график функции по горизонтали именно в столько раз

6. Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Впрочем ее период не будет легкой суммой периодов T1 и T2. Если итог деления T1/T2 - разумное число, то сумма функций периодична, и ее период равен наименьшему всеобщему кратному (НОК) периодов T1 и T2. Скажем, если период первой функции равен 12, а период 2-й - 15, то период их суммы будет равен НОК (12, 15) = 60.Наглядно это дозволено представить так: функции идут с различной «шириной шага», но если отношение их ширин осмысленно, то рано либо поздно (а вернее, именно через НОК шагов), они вновь сравняются, и их сумма начнет новейший период.

7. Впрочем если соотношение периодов иррационально, то суммарная функция не будет периодической совсем. Скажем, пускай F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 тут будет равен 2, а T2 равен 2?. Соотношение периодов равняется? - иррациональному числу. Следственно, функция sin(x) + x mod 2 не является периодической.

Многие математические функции имеют одну специфика, облегчающую их построение, – это периодичность , то есть повторяемость графика на координатной сетке через равные интервалы.

Инструкция

1. Самыми вестимыми периодическими функциями математики являются синусоида и косинусоида. Эти функции имеют волнообразный нрав и стержневой период, равный 2П. Также частным случаем периодической функции является f(x)=const. На позицию х подходит всякое число, основного периода данная функция не имеет, потому что представляет собой прямую.

2. Вообще функция является периодической, если существует такое целое число N, которое отменно от нуля и удовлетворяет правилу f(x)=f(x+N), таким образом обеспечивая повторяемость. Период функции – это и есть наименьшее число N, но не нуль. То есть, скажем, функция sin x равна функции sin (x+2ПN), где N=±1, ±2 и т.д.

3. Изредка при функции может стоять множитель (скажем sin 2x), тот, что увеличит либо сократит период функции. Для того дабы обнаружить период по графику , нужно определить экстремумы функции – самую высокую и самую низкую точки графика функции. Потому что синусоида и косинусоида имеют волнообразный нрав, это довольно легко сделать. От данных точек постройте перпендикулярные прямые до пересечения с осью Х.

4. Расстояние от верхнего экстремума до нижнего будет половиной периода функции. Комфортнее каждого вычислять период от пересечения графика с осью Y и, соответственно, нулевой отметки по оси х. Позже этого нужно умножить полученное значение на два и получить стержневой период функции.

5. Для простоты построения графиков синусоиды и косинусоиды нужно подметить, что если при функции стоит целое число, то ее период удлинится (то есть 2П необходимо умножить на этот показатель) и график будет выглядеть больше мягко, плавно; а если число дробное, напротив, сократится и график станет больше «острым», скачкообразным на вид.

Видео по теме

Изучая явления природы, решая технические задачи, мы сталкиваемся с периодическими процессами, которые можно описать функциями особого вида.

Функция y = f(x) с областью определения D называется периодической, если существует хотя бы одно число T > 0, такое, при котором выполняются следующие два условия:

1) точки x + T, x − T принадлежат области определения D для любого x ∈ D;

2) для каждого x из D имеет место соотношение

f(x) = f(x + T) = f(x − T).

Число T называется периодом функции f(x). Иными словами, периодической функцией является такая функция, значения которой повторяются через некоторый промежуток. Например, функция y = sin x - периодическая (рис. 1) с периодом 2π.

Заметим, что если число T является периодом функции f(x), то и число 2T также будет ее периодом, как и 3T, и 4T и т. д., т. е. у периодической функции бесконечно много разных периодов. Если среди них имеется наименьший (не равный нулю), то все остальные периоды функции являются кратными этого числа. Заметим, что не каждая периодическая функция имеет такой наименьший положительный период; например, функция f(x)=1 такого периода не имеет. Важно также иметь в виду, что, например, сумма двух периодических функций, имеющих один и тот же наименьший положительный период T 0 , не обязательно имеет тот же самый положительный период. Так, сумма функций f(x) = sin x и g(x) = −sin x вообще не имеет наименьшего положительного периода, а сумма функций f(x) = sin x + sin 2x и g(x) = −sin x, наименьшие периоды которых равны 2π, имеет наименьший положительный период, равный π.

Если отношение периодов двух функций f(x) и g(x) является рациональным числом, то сумма и произведение этих функций также будут периодическими функциями. Если же отношение периодов всюду определенных и непрерывных функций f и g будет иррациональным числом, то функции f+g и fg уже будут непериодическими функциями. Так, например, функции cos x sin √2 x и cosj √2 x + sin x являются непериодическими, хотя функции sin x и cos x периодичны с периодом 2π, функции sin √2 x и cos √2 x периодичны с периодом √2 π.

Отметим, что если f(x) - периодическая функция с периодом T, то сложная функция (если, конечно, она имеет смысл) F(f(x)) является также периодической функцией, причем число T будет служить её периодом. Например, функции y = sin 2 x, y = √(cos x) (рис. 2,3) - периодические функции (здесь: F 1 (z) = z 2 и F 2 (z) = √z). Не следует, однако, думать, что если функция f(x) имеет наименьший положительный период T 0 , то и функция F(f(x)) будет иметь такой же наименьший положительный период; например, функция y = sin 2 x имеет наименьший положительный период, в 2 раза меньший, чем функция f(x) = sin x (рис. 2).

Нетрудно показать, что если функция f периодична с периодом T, определена и дифференцируема в каждой точке действительной прямой, то функция f"(x) (производная) есть также периодическая функция с периодом T, однако первообразная функция F(x) (см. Интегральное исчисление) для f(x) будет периодической функцией только в том случае, когда

F(T) − F(0) = T o ∫ f(x) dx = 0.