Полупроводник. n-тип, p-тип, примесные элементы

Известно, что в веществе, помещенном в электрическое поле, при воздействии сил данного поля образуется движение свободных электронов, либо ионов по направлению сил поля. Другими словами, в веществе происходит возникновение электрического тока.

Свойство, определяющее способность вещества проводить электрический ток имеет название «электропроводность». Электропроводность напрямую зависима от концентрации заряженных частиц: чем выше концентрация, тем она электропроводность.

По данному свойству все вещества подразделяются на 3 типа:

  1. Проводники.
  2. Полупроводники.

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах. Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей.

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Описание диэлектриков

Диэлектрики также принято называть электроизоляционными веществами.

Все электроизоляционные вещества имеют следующую классификацию:

  • В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
  • В зависимости от способы получения — естественными и синтетическими.
  • В зависимости от химического состава – органическими и неорганическими.
  • В зависимости от строения молекул – нейтральными и полярными.

К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле . Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.

В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.

Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.

О полупроводниках

Полупроводник выступает в роли промежуточного вещества между проводником и диэлектриком . Самыми яркими представителями данного типа веществ являются кремний, германий, селен. Помимо этого, к данным веществам принято относить элементы четвертой группы периодической таблицы Дмитрия Ивановича Менделеева.

Полупроводники имеют дополнительную «дырочную» проводимость, в дополнение к электронной проводимости. Данный тип проводимости зависим от ряда факторов внешней среды, среди которых свет, температура, электрическое и магнитное поле.

В данных веществах имеются непрочные ковалентные связи. При воздействии одного из внешних факторов связь разрушается, после чего происходит образование свободных электронов. При этом, когда электрон отсоединяется, в составе ковалентной связи остается свободная «дырка». Свободные «дырки» притягивают соседние электроны, и так данное действие может производиться бесконечно.

Увеличить проводимость полупроводниковых веществ можно путем внесения в них различных примесей. Данный прием широко распространен в промышленной электронике: в диодах, транзисторах, тиристорах. Рассмотрим более подробно главные отличия проводников от полупроводников.

Чем отличается проводник от полупроводника?

Основным отличием проводника от полупроводника является способность к проводимости электрического тока. У проводника она на порядок выше.

Когда поднимается значение температуры, проводимость полупроводников также возрастает; проводимость проводников при повышении становится меньше.

В чистых проводниках в нормальных условиях при прохождении тока высвобождается гораздо большее количество электронов, нежели в полупроводниках. При этом, добавление примесей снижает проводимость проводников, но увеличивает проводимость полупроводников.

Из всего многообразия кабельных изделий каждый из типов предназначен для использования в определенных целях. Например, ПВС и ШВВП – провод и шнур с гибкими многопроволочными жилами, который часто используются для подключения нестационарного электрооборудования. Это такое оборудование, которое может перемещаться в процессе своей работы, например, дрели, болгарки, настольные лампы и прочее. В этой статье мы рассмотрим, в чем разница между проводниками и какой лучше использовать для конкретных задач.

Сравнение характеристик

Чтобы понять, чем отличается шнур ШВВП от провода ПВС, давайте сравним технические характеристики.

ШВВП

(Ш-шнур, В-оболочка ПВХ, В-внешняя ПВХ-оболочка, П-плоский)

(П-провод, В-оболочка из ПВХ, С-соединительный)

Номинальное напряжение, Вольт переменного тока 50 Гц 400 660
Диапазон сечений, кв. мм от 0,35 до 4 от 0,75 до 16 (иногда встречаются 0,5 и 25 кв. мм)
Количество жил 2 или 3 от 2 до 5
Допустимые рабочие температуры, градусов Цельсия от -25 до +50 от -50 до +50
Срок службы, лет 6 6

Изоляция у обоих проводников из ПВХ-пластиката, как наружная оболочка, так и оболочки каждой из жил. И шнур, и провод используются для подключения подвижного оборудования. Но их конструкция отличается тем, что у ШВВП жилы уложены параллельно друг другу, а наружная оболочка выполнена тонким слоем изоляции. Из-за этого у шнура плоская форма, что и указано в маркировке.

Жилы провода ПВС уже скручены между собой по всей длине, наружная оболочка выполняется с полным заполнением между жильного пространства, что даёт толстый защитный слой. Однако витая укладка жил увеличивает расход проводников и других материалов на каждый метр кабеля, а толстая внешняя оболочка увеличивает расход ПВХ – всё это приводит к увеличению конечной стоимости продукта.

Внимание: стоимость ПВС больше чем у ШВВП примерно на 30%.

Если внимательно изучить таблицу, можно заметить, что, диапазон сечений у рассматриваемого шнура сосредоточен в меньших величинах, чем у провода. Такое отличие говорит о том, что ШВВП предназначен для питания потребителей меньшей мощности. Разница в конструкции приводит и к тому, что плоский шнур легче поддается изгибам и занимает меньше места при укладке, но при этом более подвержен случайным повреждениям, чем толстый круглый и витой ПВС.

Область применения

Удлинители или переноски

Основная сфера применения и предназначения обсуждаемых проводников – это удлинители. При этом если удлинитель будет использоваться в тяжелых условиях (на стройке, в гараже для подключения электроинструмента), лучше выбрать . В этом случае характерны частые перегибы и случайные удары и трения, поэтому важно чтобы у проводника была качественная и толстая изоляция.

Если удлинитель будет проложен где-нибудь за мебелью или другим способом, где вероятность того что его придавят или произойдут другие повреждения минимальна, то вполне можно выбрать . Его удобнее будет проложить или провести в узких местах из-за меньших размеров. Такие удлинители используют, когда розетка расположена в неудобном месте, а также для подключения нескольких электроприборов установленных в одном месте, например, телевизора, медиа проигрывателя и акустической системы.

Поговорим о том, что лучше для удлинителя: провод ПВС или ШВВП. Если говорить обобщенно, то удлинитель из ПВС используется там, где вероятны частые удары или повреждения. Также он лучше подходит для подключения мощного электрооборудования, например, перфораторов, болгарок или даже каких-то технологических устройств типа тепловых пушек, при условии отсутствия прямого попадания потоков горячего воздуха или частей устройства на сам провод.

ШВВП используют для тех удлинителей, в которые не подключаются мощные приборы. Они лучше подходят для подключения небольшого кухонного оборудования, светильников, электробритв и бытовой электроники.

О том, мы рассказывали в статье. Ознакомьтесь с материалом, чтобы сделать надежный удлинитель для подключения бытовой техники.

Освещение и проводка

Так как скрытая и открытая проводка являются стационарными электроустановками, то под это определение уже не подходят ни провод, ни шнур. В отличие от них кабель с однопроволочными жилами типа специально предназначен на использование в проводке. Тем не менее часто возникает вопрос: «Можно ли использовать ШВВП или ПВС для проводки либо освещения?». Для основной проводки и подключения розеточных групп их применение не рекомендуется.

У ШВВП наружная оболочка достаточно тонкая, для прокладки в стене, хотя это можно исправить его прокладкой в ПВХ-гофре. В то же время у ПВС хоть и толстый слой изоляции, но есть интересное мнение о том, что это затруднит отдачу тепла окружающей среде токопроводящими жилами, что особенно важно при скрытой прокладке под штукатуркой.

При в подвесном потолке провода прокладываются за гипсокартонным листом, а если потолок натяжной – то по поверхности чернового потолка. В связи с многообразием дизайнерских решений по установке точек освещения по изогнутым контурам, удобнее будет использовать провода с гибкими жилами. В этих случаях будет удобным выбор ШВВП или ПВС. Но с точки зрения долговечности и механической прочности в этом случае ПВС подходит лучше.

Прокладка на улице допускается только в , а диапазон рабочих температур лучше подходит для этой цели у провода ПВС.

Мы рассмотрели отличия ШВВП от ПВС и советы о том, какой из них выбрать для конкретных задач. Но хотим напомнить, что соединение этих проводов нужно проводить с помощью клеммников с пружинным зажимом (типа ВАГО), пайки, сварки, гильзованием. Делать скрутки категорически запрещено, а при зажиме под винт (как в розетках) жилы провода начинают рваться, из-за чего ухудшается контакт. Со временем он будет греться или вообще отгорит.

Материалы

Люди частенько употребляют слова «провод» и «кабель», как синонимы. Эти два изделия имеют схожий внешний вид, но это не значит, что они совершенно одинаковые. Визуально они похожи, и с этим не поспоришь. Обычному потребителю вряд ли удастся визуально определить, какое изделие у него в руках.

В то время как специалист по электронике, электротехнике или другой профессионал, который по роду своей деятельности имеет дело с электричеством, без труда назовет . Возможно, некоторые обычные пользователи также способны понять суть этого отличия благодаря интуиции. Но сформулировать четко смогут не все.

Людям, которые не получили специальных знаний по электротехнике, но которым приходится сталкиваться с ремонтом бытовых электроприборов, будет очень полезно разобраться в терминологии и получить достоверную информацию.

Отличие кабеля от провода

Какое же у этих изделий сходство или различие? Визуально они очень похожи, но по документации эти изделия проходят под разными наименованиями – «провод» и «кабель». А если заглянуть в строительную смету, то там четко видно, что провод стоит дешевле, чем кабель.

В различной спецлитературе, учебниках и справочниках даются определения этим понятиям, но они довольно пространные. Зато в ТУ и ГОСТ есть характеристика изделий, относящихся к «проводу» или к «кабелю».

В ТУ зачастую можно найти лишь небольшие детали, по которым необходимо различать кабель и провод. Например, форма (плоская или круглая), толщина оболочки, изоляция, количество жил.

Если говорить о форме, то она не несет специфической нагрузке. От формы изделия зависит разве что удобство использования в конкретной ситуации. Определяющим фактом в делении на провод или кабель является спецификация. В ней указано конкретно, какое это изделие.

Слова « кабель» и «провод» часто используются в описаниях электропроводки и электрических сетей, когда имеется в виду проводник электрического тока. Может показаться, что эти два изделия – одно и тоже. Но между ними есть разница, которая будет описана ниже.

Что представляет собой провод ? В электротехнике так называют многожильный или одножильный проводник, который имеет легкую трубчатую изоляцию, либо вовсе ее не имеет.

Кабель представляет собой систему изолированных проводников, которые для удобства монтажа и эксплуатации, а также для защиты от влияния окружающей среды и механических повреждений объединены в единую конструкцию. Для повышения безопасности использования электрических проводов, для облегчения их совместной прокладки, для обеспечения защиты при эксплуатации в сложных условиях электрические провода собирают вместе. На них «одевается» дополнительный слой изоляции. Кабель защищают броневым кожухом при необходимости.

Итак, провод – это одни проводник, а кабель – это две или более изолированные жилы, объединенные вместе. Помимо изоляции жил кабель имеет изоляционную оболочку. Если на двух или более проводниках нет никакой изоляции, то перед вами просто проводник, по классификации – это «провод», а не «кабель».

Все провода и кабели можно разделить на несколько категорий в зависимости от характеристик изделия, особенностей конструкции и материалов, используемых при изготовлении.

Провода делятся на две группы:

  1. - многожильный провод, например, ПВ-3 – гибкий провод из меди;
  2. - из сплошной проволоки (монолит), например, ПВ-1 – однопроволочный провод из меди.

От коэффициента гибкости и уровня сопротивления зависят требования к эксплуатации и применение провода. Одножильные твердые провода могут быть как без оболочки, «голыми», так и в оболочке. Благодаря своей конструкции такой тип провода предполагает уменьшение сопротивления. Если за цель ставится увеличение производительности на высоких частотах, то обычно прибегают к использованию подобных твердых проводников.

Первый тип провода представляет собой множество токопроводящих жил. Этот провод состоит из нескольких нитей медной проволоки, которые сплетены в единое целое. При внешних механических воздействиях, а также при частых перегибах такое строение провода помогает увеличить срок эксплуатации изделия и достичь существенной гибкости.

Многожильная жила или монолит - какой кабель лучше

Кабель с одной жилой обычно называют жестким, а гибким считается кабель с многопроволочной жилой. Гибкость кабеля тем выше, чем тоньше каждая проволочка, и чем больше число этих проволочек в жиле.

В зависимости от гибкости кабель делится на семь классов. Самый гибкий – 7-ой класс, а моножила относится к 1-ому классу. Кабель высокого класса гибкости стоит дороже.

Назначение жесткого кабеля – это укладка в грунт, заделка его в стены, в то время как гибкий кабель применяют для подключения электроприборов или подвижных механизмов. С точки зрения эксплуатации не имеет значения, какой кабель жесткий или гибкий. Что касается монтажа, то все зависит от предпочтений конкретного электрика.

Важно отметить, что концы гибкого кабеля, впоследствии вставляемые в выключатели или в розетку, обязательно необходимо пропаять и обжать специальными трубчатыми наконечниками – оконцевателями. Жесткий кабель не требует такой процедуры.

Гибкий кабель более уместен для подключения осветительных устройств, так как эти устройства меняются довольно часто. Если взять для этих целей жесткий кабель, то при подключении нового электрооборудования велика вероятность, что он сломается.

Изоляция жил и оболочка кабеля

Двойная изоляция однозначно лучше. Как известно, срок службы кабеля в двойной изоляции составляет 30 лет, а в одинарной оболочке срок службы − до15 лет.

  • - для прокладки в сауне или в другом горячем помещении используются термостойкие кабели;
  • - маркировка «нг» означает, что кабель не поддерживает горение, но это не значит, что он термостойкий, то есть для высоких температур такой кабель не предназначен;
  • - есть кабели, которые могут «работать» при воздействии пламени в течение 120, 60 или 30 минут, на них вы увидите маркировку соответственно Е120, Е60 или Е30;
  • - кабель с полиэтиленовой оболочкой допустимо прокладывать как открытым способом, так и в грунте;
  • - кабель с ПВХ (поливинилхлорид) изоляцией можно прокладывать в кабельных каналах или в помещении.

Надеюсь данная статья помогла вам разобраться чем отличается кабель от провода. Если у Вас возникли вопросы оставляйте их в комментариях, с удовольствием на них отвечу.

Современная кабельная промышленность располагает обширным ассортиментом различных проводов. И каждый вид провода предназначен для решения определенного круга задач.

Связавшись с электромонтажом на своем собственном участке или в собственной квартире, можно очень скоро заметить, что кабели и провода, используемые в монтаже - преимущественно медные, реже алюминиевые. Других материалов при всем разнообразии просто нет. Далее можно заметить, что различной бывает и структура жил этих кабелей: жила может состоять из множества проволочек, а может быть цельной. Структура жил влияет на гибкость кабеля, но никак не сказывается на его проводимости.

Кажется, что на том спектр и заканчивается. Но откуда же тогда такое разнообразие марок? ВВГ, NYM, СИП, ПВС, ШВВП - чем же они отличаются друг от друга? Большей частью - свойствами изоляции.

В этой статье мы рассмотрим основные распространенные разновидности электрических проводов, остановимся на их характеристиках, и отметим области их применения.

Для электрификации жилых домов используют разные, в основном медные, кабели, но в последние годы чаще всего можно встретить кабель ВВГ, включая его модифицированные версии.

Маркировка кабеля ВВГ означает: внешняя изоляция из поливинилхлорида, изоляция жил - также из поливинилхлорида, жилы кабеля гибкие. Хотя гибкость кабеля ВВГ относительна, ведь до сечения 25 кв. мм. включительно его жилы выполняются сплошными, а не многопроволочными.

Изоляция кабеля стойка к агрессивным средам, при этом довольно прочна и не поддерживает горение. Жилы могут быть как однопроволочными, так и многопроволочными, в зависимости от модификации кабеля ВВГ.

Главное назначение данного кабеля — передача и распределение электроэнергии в сетях с напряжением до 1000 вольт при промышленной частоте переменного тока 50 Гц. Для прокладки домашних сетей используют кабель ВВГ с сечением до 6 кв.мм, для электрификации частных домов — до 16 кв.мм. При монтаже допускается изгиб по минимальному радиусу в 10 размеров провода по ширине. Кабель поставляется в бухтах по 100 метров.

Среди разновидностей кабеля ВВГ встречаются: АВВГ — с алюминиевой жилой, ВВГнг — с огнеупорной оболочкой, ВВГп — плоское сечение, ВВГз — с добавлением ПВХ или в резиновой изоляции еще и между отдельными жилами.

ВВГ - самый распространенный медный кабель для внутреннего монтажа. Его прокладывают открыто, в коробах, закладывают в штробы. Изоляция ВВГ обеспечивает ему длительный срок службы - 30 лет. Количество жил кабеля ВВГ может соответствовать потребностям как трехфазной, так и однофазной сети: от двух до пяти.

Самый распространенный цвет внешней изоляции кабелей ВВГ - черный, но в последнее время и белый ВВГ совсем перестал быть редкостью. Цвет изоляции отдельных жил ВВГ соответствует стандартной маркировке: для жилы РЕ - желто-зеленый, для жилы N - голубой или белый с голубой полосой, а изоляция фазных жил наиболее часто выполняется чисто белой.

Модификации кабеля ВВГ с пометками «НГ» и «LS» отличаются, соответственно, неспособностью изоляции распространять горение и низким уровнем дымовыделения при воздействии огня. Существует и модификация ВВГ, отличающаяся способностью полностью противостоять открытому огню на протяжении какого-то определенного времени в минутах. Такая модификация обозначается латинскими буквами FR.

В быту уже практически не встречается кабель, аналогичный по характеристикам кабелю ВВГ, но имеющий жилы из алюминия - АВВГ. Его непопулярность обоснована ограничением на использование алюминия в распределительных сетях, а также недостатками алюминиевой кабельной продукции.

Кроме того, существует зарубежный аналог кабеля ВВГ, изготавливаемый по международному стандарту DIN. Речь идет о кабеле NYM. От ВВГ он отличается несколько улучшенными характеристиками, в частности, тем, что имеет специальный самозатухающий внутренний наполнитель, обеспечивающий герметизацию соединений.

Медные цельнопроволочные токопроводящие жилы имеет ПВХ-изоляцию, внешняя оболочка — также из ПВХ, не поддерживает горение, стойка к воздействию агрессивных сред. От одной до пяти жил сечением от 1,5 до 35 кв.мм. расположены плотно внутри белой защитной оболочки. Между проводниками имеется уплотнение мелованной резиной без галогенов, обеспечивающее кабелю термостойкость и прочность. Данный кабель применим в широком температурном диапазоне от -40°C до +70°C, влагостоек. Цвета изоляции жил: коричневый, черный, серый, синий, желто-зеленый.

Кабель NYM предназначен для монтажа силовых и осветительных сетей в промышленных и жилых зданиях при максимальном напряжении до 660 вольт (300/500/660). Кабель может быть проложен как внутри помещения, так и на открытом воздухе, с учетом, однако, того, что солнечный свет изоляции кабеля вредит, поэтому при монтаже на открытом воздухе его обязательно необходимо от солнечного света защищать, например поместив в гофру.

При монтаже допускается изгиб по радиусу не менее четырех диаметров кабеля. Поставляется в бухтах от 50 метров.

В отличие от ВВГ, кабель NYM всегда имеет только медные и только цельнопроволочные жилы (моножилы). Он достаточно удобен при обычном монтаже, поскольку имеет идеально круглое сечение, но по этой же причине его несколько неудобно закладывать в штукатурку или в бетон, в остальном похож на ВВГ.

Производство кабеля на видео:

Как отличить качественный кабель при его покупке:

СИП означает «самонесущий изолированный провод». Это означает, что СИП способен выдерживать воздействие существенных механических нагрузок. Если учесть и то, что изоляция СИПа выполнена из сшитого полиэтилена, невосприимчивого к воздействию влаги и прямых солнечных лучей, то очевидной становится сфера его использования: это уличный кабель для выполнения ЛЭП и . Он потихоньку вытесняет ранее широко использовавшиеся для этих целей неизолированные алюминиевые провода А и АС.

СИП - это алюминиевый кабель, жилы которого не имеют общей изоляции. Минимальное сечение жил СИП составляет 16 кв. мм., а максимальное - 150 кв. мм. В маркировке этого провода напрямую не указывается количество жил - приводится лишь номенклатурный номер, в котором и зашифрованы все данные.

К примеру, СИП-1 - это кабель из трех жил, одна из которых - нулевая несущая. СИП-2 - это кабель из четырех жил, одна из которых - нулевая несущая. А СИП-4 имеет в своем составе четыре токоведущих жилы, механическая нагрузка на которые распределена равномерно.

Поскольку СИП - очень специфичный кабель, то для монтажа с его использованием выпускается весь спектр специальной арматуры: ответвительные и соединительные зажимы и анкерные кронштейны.

ПВС - медный провод в изоляции из винила соединительный. Оболочка изготовлена так, что заполняет собой пространство между жилами, чем придает проводу высокую прочность. Количество жил — от двух до пяти, а сечение каждой — от 0,75 до 16 кв.мм.

Диапазон рабочих температур - от -25°C до +40°C, устойчив к химическим воздействиям, допускается 100% влажность окружающей среды. Провод выдерживает многократные циклы перегибов, до 3000 раз гарантированно. Цвет оболочки белый. Цвет жил: красный, черный, оранжевый, синий, серый, коричневый, зеленый, желтый, желто-зеленый.

Провод ПВС широко применяется в быту в качестве различных бытовых приборов, например электрочайников, а также в удлинителях. Он предназначен для работы в цепях переменного тока частотой 50 Гц с напряжением до 380 вольт, поэтому провод ПВС используют и в сетях, где требуется гибкий провод для прокладки проводки систем освещения, розеток и т. д. Гибкость — одно из важнейшых достоинств этого провода.

Изоляция ПВС, как внутренняя, так и внешняя, выполнена из поливинилхлорида. Внутренняя изоляция жил, как и у ВВГ, имеет стандартную маркировку. Но жилы ПВС - многопроволочные, поэтому это очень гибкий кабель. Необходимо только учесть, что жилы ПВС при монтаже надо обязательно оконцовывать или лудить.

С учетом того, что внешний слой винила у круглого ПВС имеет толщину до нескольких миллиметров, этот кабель отлично подходит для шнуров . То есть для их «соединения» с сетью. Поэтому его и называют соединительным.

ПВС относительно хорошо выдерживает механические нагрузки. Сечение его жил варьируется от 0,75 до 16 кв. мм., поэтому этот кабель можно использовать для изготовления любых удлинителей и переносок, не эксплуатирующихся в условиях низких температур. Ведь на морозе оболочка ПВС, к сожалению, просто лопается.

ШВВП - шнур в виниловой оболочке, с жилами в виниловой изоляции, плоский. В целом этот кабель похож на ВВГ, но, в отличие от последнего, ШВВП имеет гибкие многопроволочные медные жилы. Поэтому он, как и ПВС, часто . Однако изоляция ШВВП не отличается повышенной прочностью, и ответственные нагруженные линии этим шнуром не выполняются.

Соответственно, и сечения у ШВВП бывают только небольшие: 0,5 или 0,75 кв. мм. при количестве жил, равном двум или трем. Провод по форме плоский. Данный провод может эксплуатироваться при температурах от -25°C до +70°C, и выдерживает влажность до 98%. Легко сносит воздействие химически агрессивных сред. Цвет оболочки белый либо черный. Цвет жил: голубой, коричневый, черный, красный, желтый.

Кроме слабеньких удлинителей (которые, кстати, часто становятся причиной неприятностей в хозяйстве плохо знакомых с электричеством людей), ШВВП чаще всего используется в автоматизации, для питания слаботочных систем.

Также его применяют для присоединения к сети бытовых приборов, таких как холодильники, стиральные машины, приборы личной гигиены и т. д. Он способен работать в сетях переменного тока частотой 50 Гц при напряжении до 380 вольт. Весьма гибок, что очень важно в быту.

Основная функция провода ШВВП — присоединительный шнур: на одном конце прибор, на другом — вилка.

КГ - это гибкий медный резиновый кабель с многопроволочными жилами, сечение которых изменяется от 0,5 до 240 кв. мм. Число жил может составлять от одной до пяти. Резина изоляции жил — на основе натуральных каучуков.

Рабочий температурный диапазон кабеля от -60°C до +50°C при влажности до 98%. Изоляция кабеля КГ позволяет прокладывать его на открытом воздухе и даже на открытом солнечном свете. Жилы всегда многопроволочные, что и делает данный кабель гибким. Цветовая маркировка жил: голубой, черный, коричневый, желто-зеленый, серый.

КГ чаще всего используется в промышленных установках, там где необходимо обеспечить гибкий подвижный кабельный ввод.

Кабель КГ предназначен для питания переносных мобильных устройств, таких как тепловые пушки, сварочные аппараты, прожекторы и т. д., от сети переменного тока или от генераторов с частотой до 400 Гц при напряжении до 660 вольт, либо постоянным напряжением до 1000 вольт.

При монтаже допускается изгиб по радиусу не менее восьми наружных диаметров. Обычно поставляется в бухтах по 100 метров и более. Имеется модификация КГнг — в негорючей изоляции.

Очень важно, что резиновая изоляция этого кабеля даже на сильном морозе частично сохраняет свои свойства, и КГ практически всегда остается гибким, особенно если говорить о модификации ХЛ. Поэтому его часто используют для изготовления удлинителей, эксплуатирующихся в самых разных жестких условиях.

Силовой бронированный кабель с медными токопроводящими жилами, которые могут быть как однопроволочными, так и многопроволочными. От одной до шести жил сечением от 1,5 до 240 кв.мм. имеют ПВХ изоляцию и ПВХ оболочку. Особенность данного кабеля заключается в наличии между жилами и оболочкой слоя стальной двухленточной брони.

Кабель легко выдерживает температуру от -50°C до +50°C при влажности до 98%. Изоляция из ПВХ обеспечивает устойчивость к агрессивным средам. Цвет оболочки — черный. Цвет изоляции жил либо сплошной либо в сочетании основных маркировочных цветов с белым.

Бронированный кабель ВББШв предназначен для прокладки сетей электроснабжения отдельно стоящих зданий и сооружений, а также электрических установок, как под землей, так и в трубах на открытом воздухе (для защиты от солнечных лучей). Максимальное напряжение переменного тока — до 6000 вольт. Для постоянного тока применяют традиционно одножильные модификации данного кабеля.

При монтаже допускаются изгибы радиуса не менее десяти внешних диаметров кабеля. Поставляется традиционно в бухтах от 100 метров. Имеются модификации: АВББШв — алюминиевые жилы, ВББШвнг — негорючее исполнение, ВББШвнг-LS - негорючее исполнение с низким газовыделением в условиях повышенной температуры.

Плоский монтажный провод с медными однопроволочными жилами в ПВХ-изоляции и в ПВХ-оболочке. Жил может быть две или три, сечением от 1,5 до 6 кв.мм. Диапазон рабочих температур от -15°C до +50°C, допустимая влажность 98%. Стоек к агрессивным средам. Цвет оболочки белый или черный, цвет жил: белый, синий, желто-зеленый.

Предназначен для монтажа осветительных систем и проводки розеток в зданиях, при максимальном напряжении переменного тока промышленной частоты в 250 вольт. При монтаже допускаются изгибы радиусом не менее десятикратной ширины. Поставляется в бухтах по 100 и 200 метров.

Модификация ПБППг (ПУГНП) — многопроволочные жилы, при монтаже допускается изгиб по радиусу не менее шестикратной ширины. Модификация АПУНП — алюминиевые цельнопроволочные (только цельнопроволочные) жилы.

Плоский провод с однопроволочными медными жилами в ПВХ-изоляции с разделительными междужильными вставками. Жил может быть две либо три. Сечение жил от 0,75 до 6 кв.мм. Провод допускается эксплуатировать в температурном диапазоне от -50°C до +70°C.

Изоляция стойка к воздействиям агрессивных сред и к вибрациям, не поддерживает горение, а допустимая влажность окружающей среды составляет 100%. Цвет изоляции традиционно белый, дополнительной защитной оболочки не требуется.

Провод ППВ предназначен для монтажа стационарных осветительных систем и бытовых сетей электрификации, которые прокладываются внутри зданий. Максимальное напряжение составляет 450 вольт при переменном токе частотой до 400 Гц. При монтаже допускается изгиб радиусом не менее десятикратной ширины. Поставляется в бухтах по 100 метров. Модификация АППВ — с алюминиевыми жилами.

Алюминиевый одножильный провод круглого сечения в ПВХ изоляции. Встречается как многопроволочный, так и однопроволочный. Многопроволочная токопроводящая жила может иметь сечение от 25 до 95 кв.мм, а однопроволочная — от 2,5 до 16 кв.мм. Диапазон рабочих температур довольно широк — от -50°C до +70°C.

Изоляция устойчива к воздействиям агрессивных сред, а сам провод устойчив к вибрациям. Допускается влажность до 100%. Изоляция белого цвета.

Провод АПВ применяется при монтаже распределительных щитов, силовых сетей, осветительных систем, электрооборудования, например станков. Может работать под напряжением до 750 вольт при переменном токе частотой до 400 Гц, или при постоянном токе с напряжением до 1000 вольт.

Прокладка допускается в закрытых помещениях, либо вне помещений, но с обязательным условием — с защитой от прямых солнечных лучей, в трубе, в гофре, в специальном канале и т. д. При монтаже допустим изгиб радиусом не менее десятикратного диаметра провода. Поставляется в бухтах от 100 метров.

Медный одножильный провод круглого сечения в ПВХ-изоляции. Минимальное количество проволок в жиле — одна, минимальное сечение одной проволоки составляет 0,5 кв.мм. Многопроволочная жила может иметь сечение от 16 до 120 кв.мм, а однопроволочная — от 0,5 до 10 кв.мм.

Диапазон допустимых эксплуатационных температур — от -50°C до +70°C, изоляция стойка к химическим воздействиям, провод устойчив к механическим вибрациям, допустимая влажность — до 100%. Цвет изоляции может быть разным: красный, белый, синий, черный, желто-зеленый.

Применяется для электрификации в различных сферах, начиная с монтажа распределительных щитов и осветительных систем, заканчивая намоткой обмоток трансформаторов для бытовых нужд. Провод рассчитан на напряжение до 750 вольт при переменном токе частотой до 400 Гц, и до 1000 вольт при постоянном токе.

Прокладывают либо в помещениях, либо во внешних условиях, но в защитных трубах, гофрах, либо в кабельных каналах. Недопустима открытая прокладка в условиях постоянного нахождения провода под действием солнечных лучей.

Радиус изгиба не менее десятикратного диаметра провода. Поставляется в бухтах от 100 метров. Провод АПВ является модификацией провода ПВ1, но только с алюминием в качестве материала жилы.

Медный одножильный провод круглого сечения в ПВХ-изоляции. Многопроволочная жила провода может иметь сечение от 0,5 до 400 кв.мм. Диапазон безопасных рабочих температур — от -50°C до +70°C, изоляция стойка к воздействиям агрессивных сред, допустимая влажность — до 100%. Цвет изоляции может быть разным: красный, синий, белый, черный, желто-зеленый.

Применяется для электрификации в различных сферах: монтаж распределительных щитов, проводка осветительных систем, электропроводка для питания оборудования в промышленных цехах и т. д., то есть там, где требуется многократный изгиб. Провод рассчитан на напряжение до 750 вольт при переменном токе частотой до 400 Гц, и до 1000 вольт при постоянном токе.

Провод ПВ3 прокладывают либо в помещениях, либо во внешних условиях, но в защитных трубах, гофрах, либо в кабельных каналах. Идеален при прокладке проводки по стоякам в домах. Кроме того, этот провод популярен в автомобильном тюнинге. Недопустима открытая прокладка в условиях постоянного нахождения провода под действием солнечных лучей. Радиус изгиба не менее пятикратного диаметра провода. Поставляется в бухтах от 100 метров.

Надеемся, что данная статья помогла вам получить общее представление о наиболее распространенных электрических проводах, об их характеристиках и областях применения, и теперь вы сможете без труда правильно подобрать провод подходящего типа для своих нужд.

В электротехнике применяются различные материалы. Электрические свойства веществ определяются количеством электронов на внешней валентной орбите. Чем меньше электронов находится на этой орбите, тем слабее они связаны с ядром, тем легче могут отправиться путешествовать.

Под воздействием температурных колебаний электроны отрываются от атома и перемещаются в межатомном пространстве. Такие электроны называют свободными, именно они и создают в проводниках электрический ток. А велико ли межатомное пространство, есть ли простор для путешествия свободных электронов внутри вещества?

Структура твердых тел и жидкостей кажется непрерывной и плотной, напоминающей по структуре клубок ниток. Но на самом деле даже твердые тела больше похожи на рыболовную или волейбольную сеть. На бытовом уровне этого конечно не разглядеть, но точными научными исследованиями установлено, что расстояния между электронами и ядром атомов намного превышают их собственные размеры.

Если размер ядра атома представить в виде шара размером с футбольный мяч, то электроны в такой модели будут размером с горошину, а каждая такая горошина расположена от «ядра» на расстоянии в несколько сотен и даже тысяч метров. А между ядром и электроном пустота - просто ничего нет! Если в таком же масштабе представить расстояния между атомами вещества, размеры получатся вообще фантастические, - десятки и сотни километров!

Хорошими проводниками электричества являются металлы . Например, атомы золота и серебра имеют на внешней орбите всего по одному электрону, поэтому именно они являются наилучшими проводниками. Железо тоже электричество проводит, но несколько хуже.

Еще хуже проводят электричество сплавы с высоким сопротивлением . Это нихром, манганин, константан, фехраль и другие. Такое многообразие высокоомных сплавов связано с тем, что они предназначены для решения различных задач: нагревательные элементы, тензодатчики, образцовые резисторы для измерительных приборов и многое другое.

Для того, чтобы оценить способность материала проводить электричество было введено понятие «удельная электропроводность» . Обратное значение - удельное сопротивление . В механике этим понятиям соответствует удельный вес.

Изоляторы , в отличие от проводников, не склонны терять электроны. В них связь электрона с ядром очень прочная, и свободных электронов почти нет. Точнее есть, но очень мало. При этом в некоторых изоляторах их больше, а качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и бумагу. Поэтому изоляторы условно можно разделить на хорошие и плохие.

Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры изоляционные свойства ухудшаются, некоторым электронам все-таки удается оторваться от ядра.

Аналогично удельное сопротивление идеального проводника было бы равно нулю. Но такого проводника к счастью нет: представьте себе, как бы выглядел закон Ома ((I = U/R) с нулем в знаменателе!!! Прощай математика и электротехника.

И лишь при температуре абсолютного нуля (-273,2C°) тепловые колебания полностью прекращаются, а самый плохой изолятор становится достаточно хорошим. Для того, чтобы определить численно «это» плохой - хороший пользуются понятием удельного сопротивления. Это сопротивление в Омах кубика с длиной ребра в 1 см, размерность удельного сопротивления при этом получается в Ом/см. Удельное сопротивление некоторых веществ показано ниже. Проводимость это величина обратная удельному сопротивлению, - единица измерения Сименс, - 1См = 1 / Ом.

Хорошую проводимость или малое удельное сопротивление имеют: серебро 1,5*10^(-6), читать, как (полтора на десять в степени минус шесть), медь 1,78*10^(-6), алюминий 2,8*10^(-6). Намного хуже проводимость у сплавов с высоким сопротивлением: константан 0,5*10^(-4), нихром 1,1*10^(-4). Эти сплавы можно назвать плохими проводниками. После всех этих сложных цифр следует подставить Ом/см.

Далее в отдельную группу можно выделить полупроводники: германий 60 Ом/см, кремний 5000 Ом/см, селен 100 000 Ом/см. Удельное сопротивление этой группы больше, чем у плохих проводников, но меньше, чем у плохих изоляторов, не говоря уже о хороших. Наверное, с тем же успехом полупроводники можно было назвать полуизоляторами.

После такого короткого знакомства со строением и свойствами атома следует рассмотреть, как атомы взаимодействуют между собой, как атомы взаимодействуют между собой, как из них получаются молекулы, из которых состоят различные вещества. Для этого снова придется вспомнить об электронах на внешней орбите атома. Ведь именно они участвуют в связи атомов в молекулы и определяют физические и химические свойства вещества.

Как из атомов получаются молекулы

Любой атом находится в стабильном состоянии, если на его внешней орбите находится 8 электронов. Он не стремится забрать электроны у соседних атомов, но не отдает и свои. Чтобы убедиться в справедливости этого достаточно в таблице Менделеева посмотреть на инертные газы: неон, аргон, криптон, ксенон. Каждый из них на внешней орбите имеет 8 электронов, чем и объясняется нежелание этих газов вступать в какие - либо отношения (химические реакции) с другими атомами, строить молекулы химических веществ.

Совсем по-другому обстоит дело у тех атомов, у которых на внешней орбите нет заветных 8 электронов. Такие атомы предпочитают объединиться с другими, чтобы за счет них дополнить свою внешнюю орбиту до 8 электронов и обрести спокойное стабильное состояние.

Вот, например, всем известная молекула воды H2O. Она состоит из двух атомов водорода и одного атома кислорода, как показано на рисунке 1 .

Рисунок 1

В верхней части рисунка показаны отдельно два атома водорода и один атом кислорода. На внешней орбите кислорода находятся 6 электронов и тут же поблизости два электрона у двух атомов водорода. Кислороду до заветного числа 8 не хватает как раз двух электронов на внешней орбите, которые он и получит, присоединив к себе два атома водорода.

Каждому атому водорода для полного счастья не хватает 7 электронов на внешней орбите. Первый атом водорода получает на свою внешнюю орбиту 6 электронов от кислорода и еще один электрон от своего близнеца - второго атома водорода. На его внешней орбите вместе со своим электроном теперь 8 электронов. Второй атом водорода тоже комплектует свою внешнюю орбиту до заветного числа 8. Этот процесс показан в нижней части рисунка 1 .

На рисунке 2 показан процесс соединения атомов натрия и хлора. В результате чего получается хлористый натрий, который продается в магазинах под названием поваренная соль.

Рисунок 2 . Процесс соединения атомов натрия и хлора

Здесь тоже каждый из участников получает от другого недостающее количество электронов: хлор к своим собственным семи электронам присоединяет единственный электрон натрия, в то время, как свои отдает в распоряжение атома натрия. У обоих атомов на внешней орбите по 8 электронов, чем достигнуто полное согласие и благополучие.

Валентность атомов

Атомы, у которых на внешней орбите содержится 6 или 7 электронов, стремятся присоединить к себе 1 или 2 электрона. Про такие атомы говорят, что они одно или двухвалентны. А вот если на внешней орбите атома 1, 2 или 3 электрона, то такой атом стремится их отдать. В этом случае атом считается одно, двух или трехвалентным.

Если на внешней орбите атома содержится 4 электрона, то такой атом предпочитает объединиться с таким же, у которого тоже 4 электрона. Именно так объединяются атомы германия и кремния, использующиеся в производстве транзисторов. В этом случае атомы называются четырехвалентными. (Атомы германия или кремния могут объединяться и с другими элементами, например, кислородом или водородом, но эти соединения в плане нашего рассказа неинтересны.)

На рисунке 3 показан атом германия или кремния, желающий объединиться с таким же атомом. Маленькие черные кружочки - это собственные электроны атома, а светлые кружки обозначают места, куда попадут электроны четырех атомов - соседей.

Рисунок 3 . Атом германия (кремния).

Кристаллическая структура полупроводников

Атомы германия и кремния в периодической таблице находятся в одной группе с углеродом (химическая формула алмаза C,- это просто большие кристаллы углерода, полученные при определенных условиях), и поэтому при объединении образуют алмазоподобную кристаллическую структуру. Образование подобной структуры показано, в упрощенном, конечно, виде на рисунке 4 .

Рисунок 4 .

В центре куба находится атом германия, а по углам расположены еще 4 атома. Атом, изображенный в центре куба, своими валентными электронами связан с ближайшими соседями. В свою очередь угловые атомы отдают свои валентные электроны атому, расположенному в центре куба и соседям, - атомам на рисунке не показанным. Таким образом, внешние орбиты дополняются до восьми электронов. Конечно, никакого куба в кристаллической решетке нет, просто он показан на рисунке, чтобы было понятно взаимное, объемное расположение атомов.

Но для того, чтобы максимально упростить рассказ о полупроводниках, кристаллическую решетку можно изобразить в виде плоского схематического рисунка, несмотря на то, что межатомные связи все-таки расположены в пространстве. Такая схема показана на рисунке 5 .

Рисунок 5 . Кристаллическая решетка германия в плоском виде.

В таком кристалле все электроны крепко привязаны к атомам своими валентными связями, поэтому свободных электронов здесь, видимо, просто нет. Выходит, что перед нами на рисунке изолятор, поскольку нет в нем свободных электронов. Но, на самом деле это не так.

Собственная проводимость

Дело в том, что под воздействием температуры некоторым электронам все же удается оторваться от своих атомов, и на некоторое время освободиться от связи с ядром. Поэтому небольшое количество свободных электронов в кристалле германия существует, за счет чего есть возможность проводить электрический ток. Сколько же свободных электронов существует в кристалле германия при нормальных условиях?

Таких свободных электронов всего не более двух на 10^10 (десять миллиардов) атомов, поэтому германий плохой проводник, или как принято говорить полупроводник. При этом следует заметить, что лишь в одном грамме германия содержится 10^22 (десять тысяч миллиардов миллиардов) атомов, что позволяет «получить» около двух тысяч миллиардов свободных электронов. Кажется, что достаточно для того, чтобы пропустить большой электрический ток. Чтобы разобраться с этим вопросом, достаточно вспомнить, что такое ток силой в 1 A.

Току в 1 A соответствует прохождение через проводник за одну секунду электрического заряда в 1 Кулон, или 6*10^18 (шесть миллиардов миллиардов) электронов в секунду. На этом фоне две тысячи миллиардов свободных электронов, да еще разбросанных по огромному кристаллу, вряд ли могут обеспечить прохождение больших токов. Хотя, благодаря тепловому движению, небольшая проводимость у германия существует. Это так называемая собственная проводимость.

Электронная и дырочная проводимость

При повышении температуры электронам сообщается дополнительная энергия, их тепловые колебания становятся более энергичными, в результате чего некоторым электронам удается оторваться от своих атомов. Эти электроны становятся свободными и при отсутствии внешнего электрического поля совершают хаотические движения, перемещаются в свободном пространстве.

Атомы, потерявшие электроны, беспорядочных движений совершать не могут, а только слегка колеблются относительно своего нормального положения в кристаллической решетке. Такие атомы, потерявшие электроны, называется положительными ионами. Можно считать, что на месте электронов, вырванных из своих атомов, получаются свободные места, которые принято называть дырками.

В целом количество электронов и дырок одинаково, поэтому дырка может захватить электрон, оказавшийся поблизости. В результате атом из положительного иона вновь становится нейтральным. Процесс соединения электронов с дырками называется рекомбинацией.

С такой же частотой происходит и отрыв электронов от атомов, поэтому в среднем количество электронов и дырок для конкретного полупроводника равно, является величиной постоянной и зависимой от внешних условий, прежде всего температуры.

Если к кристаллу полупроводника приложить напряжение, то движение электронов станет упорядоченным, через кристалл потечет ток, обусловленный его электронной и дырочной проводимостью. Эта проводимость называется собственной, о ней уже было упомянуто чуть выше.

Но полупроводники в чистом виде, обладающие электронной и дырочной проводимостью, для изготовления диодов, транзисторов и прочих деталей непригодны, поскольку основой этих приборов является p-n (читается «пэ-эн») переход.

Чтобы получить такой переход, необходимы полупроводники двух видов, двух типов проводимости (p — positive — положительный, дырочный) и (n — negative — отрицательный, электронный). Такие типы полупроводников получаются путем легирования, добавления примесей в чистые кристаллы германия или кремния.

Хотя количество примесей очень мало, их присутствие в немалой степени изменяет свойства полупроводника, позволяет получить полупроводники разной проводимости. Об этом будет рассказано в следующей части статьи.

Борис Аладышкин,