Из чего состоит наружная мембрана. Функции клеточной мембраны

text_fields

text_fields

arrow_upward

Клетки отделены от внутренней среды организма клеточной или плазматической мембраной.

Мембрана обеспечивает:

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы - гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов - структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

text_fields

text_fields

arrow_upward

Мембрана клетки - эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидоа и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные цереброзидами, сульфатидами, ганглиозидами и холестерином.

Рис. 1.1 Организация мембраны.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимо действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами. Различают:

интегральные белки , проникающие через всю толщу мембраны и
периферические белки , прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и шелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками - АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки - переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки . Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета - спектрином через низкомолекулярный белок анкирин (рис. 1.2).

Рис. 1.2 Схема расположения белков в примембранном цитоскелете эритроцитов.
1 - спектрин; 2 - анкирин; 3 - белок полосы 3; 4 - белок полосы 4,1; 5 - белок полосы 4,9; 6 - олигомер актина; 7 - белок 6; 8 - гпикофорин А; 9 - мембрана.

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков - гликопротеины . Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Особенности обмена веществ в мембране

text_fields

text_fields

arrow_upward

Мембранные компоненты подвержены многим метаболическим превращениям под влиянием ферментов, расположенных на их мембране или внутри ее. К ним относятся окислительные ферменты, играющие важную роль в модификации гидрофобных элементов мембран - холестерина и др. В мембранах же при активации ферментов - фосфолипаз происходит образование из арахидоновой кислоты биологически активных соединений - простагландинов и их производных. В результате активации метаболизма фосфолипидов в мембране образуются тромбоксаны, лейкотриены, оказывающие мощное воздействие на адгезию тромбоцитов, процесс воспаления и др.

В мембране непрерывно протекают процессы обновления ее компонентов . Так, время жизни мембранных белков колеблется от 2 до 5 дней. Однако в клетке существуют механизмы, обеспечивающие доставку вновь синтезированных молекул белка к мембранным рецепторам, облегчающим встраивание белка в мембрану. «Узнавание» данного рецептора вновь синтезированным белком облегчается образованием сигнального пептида, помогающего найти на мембране рецептор.

Липиды мембраны отличаются также значительной скоростью обмена , что требует для синтеза этих компонентов мембраны большого количества жирных кислот.
На специфику липидного состава мембран клеток влияют изменения среды обитания человека, характера его питания.

Например, увеличение в пище жирных кислот с ненасыщенными связями увеличивает жидкое состояние липидов мембран клеток различных тканей, приводит к благоприятному для функции мембраны клетки изменению отношения фосфолипидов к сфингомиелинам и липидов к белкам.

Избыток холестерина в мембранах, напротив, увеличивает микровязкость их бислоя фосфолипидных молекул, понижая скорость диффузии некоторых веществ через мембраны клеток.

Пища, обогащенная витаминами А, Е, С, Р улучшает обмен липидов в мембранах эритроцитов, снижает микровязкость мембран. Это повышает деформируемость эритроцитов, облегчает выполнение ими транспортной функции (глава 6).

Дефицит жирных кислот и холестерина в пище нарушает липидный состав и функции мембран клеток.

Например, дефицит жиров нарушает функции мембраны нейтрофилов, что угнетает их способность к движению и фагоцитозу (активный захват и поглощение микроскопических инородных живых объектов и твердых частиц одноклеточными организмами или некоторыми клетками).

В регулировании липидного состава мембран и их проницаемости, регуляции пролиферации клеток важную роль играют активные формы кислорода, образующиеся в клетке сопряженно с нормально протекающими метаболическими реакциями (микросомальным окислением и др.).

Образующиеся активные формы кислорода - супероксидный радикал (О 2), перекись водорода (H 2 О 2) и др. представляют собой чрезвычайно реакционноспособные вещества. Их основным субстратом в реакциях свободнорадикального окисления являются ненасыщенные жирные кислоты, входящие в состав фосфолипидов мембран клетки (так называемые реакции перекисного окисления липидов). Интенсификация этих реакций может вызвать повреждение мембраны клетки, ее барьерной, рецепторной и обменной функций, модификацию молекул нуклеиновых кислот и белков, что ведет к мутациям и инактивации ферментов.

В физиологических условиях интенсификация перекисного окисления липидов регулируется антиоксидазной системой клеток, представленной ферментами, инактивируюшими активные формы кислорода - супероксиддисмутазой, каталазой, пероксидазой и веществами, обладающими антиокислительной активностью - токоферолом (витамин Е), убихиноном и др. Выраженный защитный эффект на мембраны клетки (цитопротекторный эффект) при различных повреждающих воздействиях на организм оказывают простагландины Е и J2, «гася» активацию свободнорадикального окисления. Простагландины защищают слизистую желудка и гепатоциты от химических повреждений, нейроны, клетки нейроглии, кардиомиоциты - от гипоксических повреждений, скелетные мышцы — при тяжелой физической нагрузке. Простагландины, связываясь со специфическими рецепторами на клеточных мембранах стабилизируют бислой последних, уменьшают потерю мембранами фосфолипидов.

Функции рецепторов мембран

text_fields

text_fields

arrow_upward

Химический или механический сигнал вначале воспринимается рецепторами мембраны клетки. Следствием этого является химическая модификация мембранных белков, влекущая активацию «вторичных посредников», обеспечивающих быстрое распространение сигнала в клетке к ее геному, энзимам, сократительным элементам и т.д.

Схематично трансмембранная передача сигнала в клетке может быть представлена следующим образом:

1) Возбужденный воспринятым сигналом рецептор активирует у — белки мембраны клетки. Это происходит при связывании ими гуанозинтрифосфата (ГТФ).

2) Взаимодействие комплекса «ГТФ-у- белки», в свою очередь, активирует фермент - предшественник вторичных посредников, расположенный на внутренней стороне мембраны.

Предшественником одного вторичного посредника - цАМФ, образующегося из АТФ, является фермент аденилатциклаза;
Предшественником других вторичных посредников - инозитолтрифосфата и диацилглицерина, образующихся из фосфатидилинозитол-4,5-дифосфата мембраны, является фермент фосфолипаза С. Кроме того, инозитолтрифосфат мобилизует в клетке еще один вторичный посредник - ионы кальция, участвующие практически во всех регуляторных процессах в клетке. Так, например, образовавшийся инозитолтрифосфат вызывает выброс кальция из эндоплазматического ретикулума и повышение его концентрации в цитоплазме, тем самым включая различные формы клеточного ответа. С помощью инозитолтрифосфата и диацилглицерина регулируется функция гладких мышц и В-клеток поджелудочной железы ацетилхолином, передней доли гипофиза тиреогропин-релизинг фактором, ответ лимфоцитов на антиген и т.д.
В некоторых клетках роль вторичного посредника выполняет цГМФ, образующийся из ГТФ с помощью фермента гуанилатциклазы. Он служит, например, вторичным посредником для натрийуретического гормона в гладких мышцах стенок кровеносных сосудов. цАМФ служит вторичным посредником для многих гормонов - адреналина, эритропоэтина и др. (глава 3).

Основные мембраны клетки:

Плазматическая мембрана

Плазматическая мембрана, окружающая каждую клетку, определяет её величину, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Мембрана участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции.

Ядерная мембрана

Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро.

Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса - ламина А, ламина В и ламина С. Важная функция этих белков - дезинтеграция ядерной оболочки в процессе митоза.

Мембрана эндоплазматического ретикулума (ЭР)

Мембрана ЭР имеет многочисленные складки и изгибы. Она образует непрерывную поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом, а также секретируемых белков. Области ЭР, не содержащие рибосом, называют гладким ЭР. Здесь происходит завершающий этап биосинтеза холестерина, фосфолипидов, реакции окисления собственных метаболитов и чужеродных веществ с участием мембранных ферментов - цитохрома Р 450 , цитохром Р 450 редуктазы, цитохром b 5 редуктазы и цитохрома b 5

Аппарат Гольджи

Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов.

Митохондриальные мембраны

Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков (меньше 10 кД). Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям удерживать белки межмембранного пространства от утечки в цитозоль.

Для внутренней мембраны митохондрий характерно высокое содержание белков, около 70%, которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в матрикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ.

Мембрана лизосом

Мембрана лизосом играет роль "щита" между активными ферментами (более 50), обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, например АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (рН 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Такие мембраны, защищают их от действия протеаз.

Общие функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Общие свойства биологических мембран

Все без исключения клеточные мембраны построены по общему принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который включены молекулы белка. В весовом отношении в зависимости от типа мембран на долю липидов приходится 25-60%, на долю белков 40-75%. В состав многих мембран входят углеводы, количество которых может достигать 2-10%.

Биологические мембраны весьма избирательно пропускают вещества из окружающего раствора. Они довольно легко пропускают воду и задерживают большинство веществ, растворимых в воде, и в первую очередь ионизированные вещества или несущие электрический заряд. В силу этого в солевых растворах биомембраны являются хорошими электроизоляторами.

Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы "растворены" в липидном бислое

Поперечный разрез плазматической мембраны

Липидный состав мембран:

Фосфолипиды. Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов, причём они распределены неравномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных "головок", так и ацильных остатков.

Специфические фосфолипиды внутренней мембраны митохондрий - кардиолипины (дифосфатидилглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты. Они синтезируются ферментами внутренней мембраны митохондрий и составляют около 22% от всех фосфолипидов мембраны.

В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины. Сфингомиелины построены на основе церамида - ацилированного аминоспирта сфингозина. Полярная группа состоит из остатка фосфорной кислоты и холина, этаноламина или серина. Сфингомиелины - главные липиды миелиновой оболочки нервных волокон.

Гликолипиды. В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у первого углеродного атома церамида. В зависимости от длины и строения углеводной части различаютцереброзиды, содержащие моно- или олигосахаридный остаток, иганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA).

Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей, проявляющих антигенные свойства.

Холестерол. Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой".

Для животной клетки среднее молярное отношение холестерол/фосфолипиды равно 0,3-0,4, но в плазматической мембране это соотношение гораздо выше (0,8-0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков, и поэтому может влиять на функции: мембранных белков.

В составе мембран растений холестерола нет, а присутствуют растительные стероиды - ситостерол и стигмастерол.

Белки мембран: принято делить на интегральные (трансмембранные) и периферические. Интегральные белки имеют обширные гидрофобные участки на поверхности и нераствориммы в воде. С липидами мембран они связаны гидрофобными взаимодействиями и частично погружены в толщу липидного бислоя, а зачастую и пронизывают бислой, оставляя на поверхности сранительно небольшие гидрофильные участки. Отделить эти белки от мембраны удается только с помощью детергентов, типа додецилсульфата или солей желчных кислот, которые разрушают липидный слой и переводят белок в растворимую форму (солюбилизируют его) образуя с ним ассоциаты. Все дальнейшие операции по очистке интегральных белков осуществляются также в присутствии детергентов. Периферические белки связаны с поверхностью липидного бислоя электростатическими силами и могут быть отмыты от мембраны солевыми растворами.

23. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, первично-активный транспорт, вторично-активный транспорт, регулируемые каналы (примеры). Перенос через мембрану макромолекул и частиц. Участие мембран в межклеточных взаимодействиях.

Существует несколько механизмов транспорта веществ через мембрану .

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Облегчённая диффузия веществ

В мембранах клеток существуют белки-транслоказы. Взаимодействуя со специфическим лигандом, они обеспечивают его диффузию (транспорт из области большей концентрации в область меньшей) через мембрану. В отличие от белковых каналов, транслоказы в процессе взаимодействия с лигандом и переноса его через мембрану претерпевают конформационные изменения. Кинетически перенос веществ облегчённой диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью Vmax. Поэтому скорость транспорта веществ облегчённой диффузией зависит не только от градиента концентраций переносимого лиганда, но и от количества белков-переносчиков в мембране.

Существуют транслоказы, переносящие только одно растворимое в воде вещество с одной стороны мембраны на другую. Такой простой транспорт называют "пассивный унипорт". Примером унипорта может служить функционирование ГЛЮТ-1 - транслоказы, переносящей глюкозу через мембрану эритроцита:

Облегчённая диффузия (унипорт) глюкозы в эритроциты с помощью ГЛЮТ-1 (S - молекула глюкозы). Молекула глюкозы связывается переносчиком на наружной поверхности плазматической мембраны. Происходит конформационное изменение, и центр переносчика, занятый глюкозой, оказывается открытым внутрь клетки. Вследствие конформационных изменений переносчик теряет сродство к глюкозе, и молекула высвобождается в цитозоль клетки. Отделение глюкозы от переносчика вызывает конформационные изменения белка, и он возвращается к исходной "информации.

Некоторые транслоказы могут переносить два разных вещества по градиенту концентраций в одном направлении - пассивный симпорт , или в противоположных направлениях -пассивный антипорт .

Примером транслоказы, работающей по механизму пассивного антипорта, может служить анионный переносчик мембраны эритроцитов. Внутренняя митохондриальная мембрана содержит много транслоказ, осуществляющих пассивный антипорт. В процессе такого переноса происходит эквивалентный обмен ионами, но не всегда эквивалентный обмен по заряду.

Первично-активный транспорт

Перенос некоторых неорганических ионов идёт против градиента концентрации при участии транспортных АТФ-аз (ионных насосов). Все ионные насосы одновременно служат ферментами, способными к аутофосфорилированию и аутодефосфорилированию. АТФ-азы различаются по ионной специфичности, количеству переносимых ионов, направлению транспорта. В результате функционирования АТФ-азы переносимые ионы накапливаются с одной стороны мембраны. Наиболее распространены в плазматической мембране клеток человека Ма+,К+-АТФ-аза, Са2+-АТФ-аза и Н+,К+,-АТФ-аза слизистой оболочки желудка.

Na+, К+-АТФ-аза

Этот фермент-переносчик катализирует АТФ-зависимый транспорт ионов Na+ и K+ через плазматическую мембрану. Ка+,К+-АТФ-аза состоит из субъединиц α и β; α - каталитическая большая субъединица, a β - малая субъединица (гликопротеин). Активная форма транслоказы - тетрамер (αβ)2.

Na+,К+-АТФ-аза отвечает за поддержание высокой концентрации К+ в клетке и низкой концентрации Na+. Так как Na+Д+-АТФ-аза выкачивает три положительно заряженных иона, а закачивает два, то на мембране возникает электрический потенциал с отрицательным значением на внутренней части клетки по отношению к её наружной поверхности.

Са2+-АТФ-аза локализована не только в плазматической мембране, но и в мембране ЭР. Фермент состоит из десяти трансмембранных доменов, пронизывающих клеточную мембрану. Между вторым и третьим доменами находятся несколько остатков аспарагиновой кислоты, участвующих в связывании кальция. Область между четвёртым и пятым доменами имеет центр для присоединения АТФ и аутофосфорилирования по остатку аспарагиновой кислоты. Са2+-АТФ-азы плазматических мембран некоторых клеток регулируются белком кальмодулином. Каждая из Са2+-АТФ-аз плазматической мембраны и ЭР представлена несколькими изоформами.

Вторично-активный транспорт

Перенос некоторых растворимых веществ против градиента концентрации зависит от одновременного или последовательного переноса другого вещества по градиенту концентрации в том же направлении (активный симпорт) или в противоположном (активный антипорт). В клетках человека ионом, перенос которого происходит по градиенту концентрации, чаще всего служит Na+.

Последовательность событий в процессе работы Са2*-АТФ-азы.

1 - связывание двух ионов кальция участком АТФ-азы, обращённой в цитозоль;

2 - изменение заряда и конформации фермента (АТФ-азы), вызванное присоединением двух ионов Са2+, приводит к повышению сродства к АТФ и активации аутофосфорилирования;

3 - аутофосфорилирование сопровождается информационными изменениями, АТФ-аза закрывается с внутренней стороны мембраны и открывается с наружной;

4 - происходит снижение сродства центров связывания к ионам кальция и они отделяются от АТФ-азы;

5 - аутодефосфорилирование активируется ионами магния, в результате Са2+-АТФ-аза теряет фосфорный остаток и два иона Мg2+;

6 - АТФ-аза возвращается в исходное состояние.

Примером такого типа транспорта может служить Na+,Са2+-обменник плазматической мембраны (активный антипорт), ионы натрия по градиенту концентрации переносятся в клетку, а ионы Са2+ против градиента концентрации выходят из клетки.

По механизму активного симпорта происходят всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы, аминокислот клетками почек.

Перенос через мембрану макромолекул и частиц: эндоцитоз и экзоцитоз

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоцитозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

УЧАСТИЕ МЕМБРАН В МЕЖКЛЕТОЧНЫХ ВЗАИМОДЕЙСТВИЯХ

В плазматической мембране эукариотических клеток содержится множество специализированных рецепторов, которые, взаимодействуя с лигандами, вызывают специфические клеточные ответы. Одни рецепторы связывают сигнальные молекулы - гормоны, нейромедиаторы, другие - питательные вещества и метаболиты, третьи - участвуют в клеточной адгезии. Этот класс включает рецепторы, необходимые для узнавания клетками друг друга и для их адгезии, а также рецепторы, ответственные за связывание клеток с белками внеклеточного матрикса, такими как фибронектин или коллаген.

Способность клеток к специфическому взаимному узнаванию и адгезии важна для эмбрионального развития. У взрослого человека адгезивные взаимодействия "клетка-клетка" и "клетка-матрикс" продолжают оставаться существенными для поддержания стабильности тканей. В многочисленном семействе рецепторов клеточной адгезии наиболее изучены интегрины, селектины и кадгерины.

Интегрины - обширное суперсемейство гомологичных рецепторов клеточной поверхности для молекул межклеточного матрикса, таких как коллаген, фибронектин, ламинин и др. Являясь трансмембранными белками, они взаимодействуют как с внеклеточными молекулами, так и с внутриклеточными белками цитоскелета. Благодаря этому интегрины участвуют в передаче информации из внеклеточной среды в клетку, определяя таким образом направление её дифференцировки, форму, митотическую активность, способность к миграции. Передача информации может идти и в обратном направлении - от внутриклеточных белков через рецептор во внеклеточный матрикс.

Примеры некоторых интегринов:

    рецепторы для белков внеклеточного мат-рикса. Они связываются с гликопротеиновыми компонентами внеклеточного матрик-са, в частности с фибронектином, ламинином и витронектином (см. раздел 15);

    интегрины тромбоцитов (IIb и IIIa) участвуют в агрегации тромбоцитов, происходящей при свёртывании крови;

    лейкоцитарные белки адгезии. Для того чтобы мигрировать к месту инфекции и воспаления, лейкоциты должны вступить во взаимодействие с эндотелиальными клетками сосудов. Это взаимодействие может опосредовать связывание Т-лимфоцитов с фибробластами при воспалении.

Кадгерины и селектины - семейства трансмембранных Са 2+ -зависимых гликопротеинов, участвующих в межклеточной адгезии. Три возможных способа участия рецепторов этого типа в межклеточной адгезии.

Рецептор фибронектина. Рецептор фибронектина принадлежит к семейству интегринов. Каждая субъединица имеет единственный трансмембранный домен, короткий цитоплазматический и протяжённый N-внеклеточный домены. Обе субъединицы (α, β) интегрина гликозилированы и удерживаются вместе нековалентными связями, α-Субъединица синтезируется в виде одной полипептидной цепи, затем расщепляемой на малую трансмембранную цепь и большую внеклеточную цепь, соединённые дисульфидными мостиками. β-Субъединица содержит 4 повтора из 40 аминокислотных остатков каждый. α-Субъединицы богаты цистеином и содержат множество внутрицепочечных дисульфидных связей (на рисунке не показаны). Связываясь с фибронектином снаружи и с цитоскелетом внутри клетки, интегрин действует как трансмембранный линкер.

Способы взаимодействия между молекулами клеточной поверхности в процессе межклеточной адгезии. А - рецепторы одной клетки могут связываться с такими же рецепторами соседних клеток (гомофильное связывание); Б - рецепторы одной клетки могут связываться с рецепторами другого типа соседних клеток (гетерофильное связывание); В - рецепторы клеточной поверхности соседних клеток могут связываться друг с другом с помощью поливалентных линкерных молекул.

Кадгерины разных тканей очень схожи, гомологичные аминокислотные последовательности составляют 50-60%. Каждый рецептор имеет один трансмембранный домен.

Наиболее полно охарактеризованы 3 группы кадгериновых рецепторов:

    Е-кадгерин находится на поверхности многих клеток эпителиальных и эмбриональных тканей;

    N-кадгерин локализован на поверхности нервных клеток, клеток сердца и хрусталика;

    Р-кадгерин расположен на клетках плаценты и эпидермиса.

Кадгерины играют важную роль при начальной межклеточной адгезии, на стадиях морфо-и органогенеза, обеспечивают структурную целостность и полярность тканей, особенно эпителиального монослоя.

В семействе селектиновых рецепторов наиболее хорошо изучены три белка: L-селектин, Р-селектин и Е-селектин. Внеклеточная часть селектинов состоит из 3 доменов: первый домен представлен 2-9 блоками повторяющихся аминокислотных остатков (комплементрегуля-торный белок), второй - домен эпидермального фактора роста (ЭФР), третий - N-концевой лектиновый домен. Селектины L, Р, Е различаются количеством блоков в ком-плементрегуляторном белке. Лектины - семейство белков, специфически взаимодействующих с определёнными последовательностями углеводных остатков в составе гликопротеинов, протеогликанов и гликолипидов внеклеточного матрикса.

Мембрана - это сверхтонкая структура, образующая поверхности органоидов и клетки в целом. Все мембраны имеют сходное строение и связаны в одну систему.

Химический состав

Мембраны клетки химически однородны и состоят из белков и липидов различных групп:

  • фосфолипидов;
  • галактолипидов;
  • сульфолипидов.

Также в их состав входят нуклеиновые кислоты, полисахариды и другие вещества.

Физические свойства

При нормальной температуре мембраны находятся в жидкокристаллическом состоянии и постоянно колеблется. Их вязкость близка к вязкости растительного масла.

Мембрана способна к восстановлению, прочна, эластична и имеет поры. Толщина мембран 7 - 14 нм.

ТОП-4 статьи которые читают вместе с этой

Для крупных молекул мембрана непроницаема. Мелкие молекулы и ионы могут проходить через поры и саму мембрану под действием разности концентраций по разные стороны мембраны, а также при помощи транспортных белков.

Модель

Обычно строение мембран описывается при помощи жидкостно-мозаичной модели. Мембрана имеет каркас - два ряда липидных молекул, плотно, как кирпичики прилегающих друг к другу.

Рис. 1. Биологическая мембрана типа сэндвича.

С обеих сторон поверхность липидов покрыта белками. Мозаичная картина образуется неравномерно распределёнными на поверхности мембраны молекулами белков.

По степени погруженности в билипидный слой белковые молекулы делят на три группы:

  • трансмембранные;
  • погружённые;
  • поверхностные.

Белки обеспечивают основное свойство мембраны - её избирательную проницаемость для различных веществ.

Типы мембран

Все мембраны клетки по локализации можно разделить на следующие типы:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана, или плазмолемма, является границей клетки. Соединяясь с элементами цитоскелета, она поддерживает её форму и размеры.

Рис. 2. Цитоскелет.

Ядерная мембрана, или кариолемма, является границей ядерного содержимого. Она построена из двух мембран, очень похожих на наружную. Внешняя мембрана ядра связана с мембранами эндоплазматической сети (ЭПС) и, через поры, с внутренней мембраной.

Мембраны ЭПС пронизывают всю цитоплазму, образуя поверхности, на которых идёт синтез различных веществ, в том числе мембранных белков.

Мембраны органоидов

Мембранное строение имеет большинство органоидов.

Из одной мембраны построены стенки:

  • комплекса Гольджи;
  • вакуолей;
  • лизосом.

Пластиды и митохондрии построены из двух слоёв мембран. Их наружная мембрана гладкая, а внутренняя образует множество складок.

Особенностями фотосинтетических мембран хлоропластов являются встроенные молекулы хлорофилла.

Животные клетки имеют на поверхности наружной мембраны углеводный слой, называемый гликокаликсом.

Рис. 3. Гликокаликс.

Наиболее развит гликокаликс в клетках кишечного эпителия, где он создаёт условия для пищеварения и защищает плазмолемму.

Таблица «Строение клеточной мембраны»

Что мы узнали?

Мы рассмотрели строение и функции клеточной мембраны. Мембрана является селективным (избирательным) барьером клетки, ядра и органоидов. Строение клеточной мембраны описывается жидкостно-мозаичной моделью. Согласно этой модели, в двойной слой липидов вязкой консистенции встроены белковые молекулы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 264.

Все живые организмы в зависимости от строения клетки делят на три группы (см. Рис. 1):

1. Прокариоты (безъядерные)

2. Эукариоты (ядерные)

3. Вирусы (неклеточные)

Рис. 1. Живые организмы

На этом уроке мы начнем изучать строение клеток эукариотических организмов, к которым относятся растения, грибы и животные. Их клетки наиболее крупные и более сложно устроены по сравнению с клетками прокариот.

Как известно, клетки способны к самостоятельной деятельности. Они могут обмениваться веществом и энергией с окружающей средой, а также расти и размножаться, поэтому внутреннее строение клетки очень сложное и в первую очередь зависит от той функции, которую клетка выполняет в многоклеточном организме.

Принципы построения всех клеток одинаковые. В каждой эукариотической клетке можно выделить следующие основные части (см. Рис. 2):

1. Наружная мембрана, которая отделяет содержимое клетки от внешней среды.

2. Цитоплазма с органеллами.

Рис. 2. Основные части эукариотической клетки

Термин «мембрана» был предложен около ста лет назад для обозначения границ клетки, но с развитием электронной микроскопии стало ясно, что клеточная мембрана входит в состав структурных элементов клетки.

В 1959 году Дж. Д. Робертсон сформулировал гипотезу о строении элементарной мембраны, согласно которой клеточные мембраны животных и растений построены по одному и тому же типу.

В 1972 году Сингером и Николсоном была предложена , которая в настоящее время является общепризнанной. Согласно этой модели основой любой мембраны является двойной слой фосфолипидов.

У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головки и двух неполярных хвостов (см. Рис. 3).

Рис. 3. Фосфолипид

В фосфолипидном бислое гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие остаток фосфорной кислоты, - наружу (см. Рис. 4).

Рис. 4. Фосфолипидный бислой

Фосфолипидный бислой представлен как динамическая структура, липиды могут перемещаться, меняя свое положение.

Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться, и препятствует попаданию в клетку токсических веществ.

О наличии пограничной мембраны между клеткой и окружающей средой было известно задолго до появления электронного микроскопа. Физико-химики отрицали существование плазматической мембраны и считали, что есть граница раздела между живым коллоидным содержимым и окружающей средой, но Пфеффер (немецкий ботаник и физиолог растений) в 1890 году подтвердил ее существование.

В начале прошлого века Овертон (британский физиолог и биолог) обнаружил, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. В связи с этим ученый предположил, что мембрана содержит большое количество липидов и вещества, растворяясь в ней, проходят через нее и оказываются по ту сторону мембраны.

В 1925 году Гортер и Грендель (американские биологи) выделили липиды из клеточной мембраны эритроцитов. Полученные липиды они распределили по поверхности воды толщиной в одну молекулу. Оказалось, что площадь поверхности, занятой слоем липидов, в два раза больше площади самого эритроцита. Поэтому эти ученые сделали вывод, что клеточная мембрана состоит не из одного, а из двух слоев липидов.

Даусон и Даниэлли (английские биологи) в 1935 году высказали предположение, что в клеточных мембранах липидный бимолекулярный слой заключен между двумя слоями белковых молекул (см. Рис. 5).

Рис. 5. Модель мембраны, предложенная Даусоном и Даниэлли

С появлением электронного микроскопа открылась возможность познакомиться со строением мембраны, и тогда обнаружилось, что мембраны животных и растительных клеток выглядят как трехслойная структура (см. Рис. 6).

Рис. 6. Мембрана клетки под микроскопом

В 1959 году биолог Дж. Д. Робертсон, объединив имевшиеся в то время данные, выдвинул гипотезу о строении «элементарной мембраны», в которой он постулировал структуру, общую для всех биологических мембран.

Постулаты Робертсона о строении «элементарной мембраны»

1. Все мембраны имеют толщину около 7,5 нм.

2. В электронном микроскопе все они представляются трехслойными.

3. Трехслойный вид мембраны есть результат именно того расположения белков и полярных липидов, которое предусматривала модель Даусона и Даниэлли - центральный липидный бислой заключен между двумя слоями белка.

Эта гипотеза о строении «элементарной мембраны» претерпела различные изменения, и в 1972 году была выдвинута жидкостно-мозаичная модель мембраны (см. Рис. 7), которая сейчас является общепризнанной.

Рис. 7. Жидкостно-мозаичная модель мембраны

В липидный бислой мембраны погружены молекулы белков, они образуют подвижную мозаику. По расположению в мембране и способу взаимодействия с липидным бислоем белки можно разделить на:

- поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

- интегральные (мембранные) белки, погруженные в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности их в гидрофобную область бислоя. Они могут быть полностью погружены (интегральные ) или частично погружены (полуинтегральные ), а также могут пронизывать мембрану насквозь (трансмембранные ).

Мембранные белки по своим функциям можно разделить на две группы:

- структурные белки. Они входят в состав клеточных мембран и участвуют в поддержании их структуры.

- динамические белки. Они находятся на мембранах и участвуют в происходящих на ней процессах.

Выделяют три класса динамических белков.

1. Рецепторные . С помощью этих белков клетка воспринимает различные воздействия на свою поверхность. То есть они специфически связывают такие соединения, как гормоны, нейромедиаторы, токсины на наружной стороне мембраны, что служит сигналом для изменения различных процессов внутри клетки или самой мембраны.

2. Транспортные . Эти белки транспортируют через мембрану те или иные вещества, также они образовывают каналы, через которые осуществляется транспорт различных ионов в клетку и из нее.

3. Ферментативные . Это белки-ферменты, которые находятся в мембране и участвуют в различных химических процессах.

Транспорт веществ через мембрану

Липидные бислои в значительной степени непроницаемы для многих веществ, поэтому требуется большое количество энергетических затрат для переноса веществ через мембрану, а также требуется возникновение различных структур.

Различают два типа транспорта: пассивный и активный.

Пассивный транспорт

Пассивный транспорт - это перенос молекул по градиенту концентрации. То есть он определяется только разностью концентрации переносимого вещества на противоположных сторонах мембраны и осуществляется без затрат энергии.

Существует два вида пассивного транспорта:

- простая диффузия (см. Рис. 8), которая происходит без участия мембранного белка. Механизмом простой диффузии осуществляется трансмембранный перенос газов (кислорода и углекислого газа), воды и некоторых простых органических ионов. Простая диффузия отличается низкой скоростью.

Рис. 8. Простая диффузия

- облегченная диффузия (см. Рис. 9) отличается от простой тем, что проходит с участием белков-переносчиков. Этот процесс специфичен и протекает с более высокой скоростью, чем простая диффузия.

Рис. 9. Облегченная диффузия

Известны два типа мембранных транспортных белков: белки-переносчики (транслоказы) и белки каналообразующие. Транспортные белки связывают специфические вещества и переносят их через мембрану по градиенту их концентрации, и, следовательно, для осуществления этого процесса, как и при простой диффузии, не требуется затраты энергии АТФ.

Пищевые частицы не могут пройти через мембрану, они проникают в клетку путем эндоцитоза (см. Рис. 10). При эндоцитозе плазматическая мембрана образует впячивания и выросты, захватывает твердую частицу пищи. Вокруг пищевого комочка формируется вакуоль (или пузырек), которая далее отшнуровывается от плазматической мембраны, и твердая частичка в вакуоли оказывается внутри клетки.

Рис. 10. Эндоцитоз

Различают два типа эндоцитоза.

1. Фагоцитоз - поглощение твердых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами .

2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензии).

Экзоцитоз (см. Рис. 11) - процесс, обратный эндоцитозу. Вещества, синтезированные в клетке, например гормоны, упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться от ненужных ей продуктов обмена.

Рис. 11. Экзоцитоз

Активный транспорт

В отличие от облегченной диффузии, активный транспорт - это перемещение веществ против градиента концентрации. При этом вещества переходят из области с меньшей их концентрацией в область с большей концентрацией. Поскольку такое перемещение происходит в направлении, противоположном нормальной диффузии, клетка должна при этом затрачивать энергию.

Среди примеров активного транспорта лучше всего изучен так называемый натрий-калиевый насос. Этот насос откачивает ионы натрия из клетки и накачивает в клетку ионы калия, используя при этом энергию АТФ.

1. Структурная (клеточная мембрана отделяет клетку от окружающей среды).

2. Транспортная (через клеточную мембрану осуществляется транспорт веществ, причем клеточная мембрана является высокоизбирательным фильтром).

3. Рецепторная (находящиеся на поверхности мембраны рецепторы воспринимают внешние воздействия, передают эту информацию внутрь клетки, позволяя ей быстро реагировать на изменения окружающей среды).

Помимо перечисленных выше мембрана выполняет также метаболическую и энергопреобразующую функцию.

Метаболическая функция

Биологические мембраны прямо или косвенно участвуют в процессах метаболических превращений веществ в клетке, поскольку большинство ферментов связаны с мембранами.

Липидное окружение ферментов в мембране создает определенные условия для их функционирования, накладывает ограничения на активность мембранных белков и таким образом оказывает регуляторное действие на процессы метаболизма.

Энергопреобразующая функция

Важнейшей функцией многих биомембран служит превращение одной формы энергии в другую.

К энергопреобразующим мембранам относятся внутренние мембраны митохондрий, тилакоиды хлоропластов (см. Рис. 12).

Рис. 12. Митохондрия и хлоропласт

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Ayzdorov.ru ().
  2. Youtube.com ().
  3. Doctor-v.ru ().
  4. Animals-world.ru ().

Домашнее задание

  1. Какое строение имеет мембрана клетки?
  2. Благодаря каким свойствам липиды способны образовывать мембраны?
  3. Благодаря каким функциям белки способны участвовать в транспорте веществ через мембрану?
  4. Перечислите функции плазматической мембраны.
  5. Как происходит пассивный транспорт через мембрану?
  6. Как происходит активный транспорт через мембрану?
  7. Какова функция натрий-калиевого насоса?
  8. Что такое фагоцитоз, пиноцитоз?

В этой статье будут описаны особенности строения и функционирования клеточной мембраны. Так же называют: плазмолемма, плазмалемма, биомембрана, мембрана клетки, наружная клеточная оболочка, клеточная оболочка. Все изложенные начальные данные понадобятся для четкого понимания течения процессов нервного возбуждения и торможения, принципов работы синапсов и рецепторов.

Плазмолемма представляет собой трехслойную липопротеиновую оболочку, отделяющую клетку от внешней среды. Она также осуществляет управляемый обмен между клеткой и внешней средой.

Биологическая мембрана являет собой ультратонкую бимолекулярную пленку, состоящую из фосфолипидов, белков и полисахаридов. Основные ее функции – барьерная, механическая и матричная.

Основные свойства мембраны клетки:

- Проницаемость мембраны

- Полупроницаемость мембраны

- Избирательная проницаемость мембраны

- Активная проницаемость мембраны

- Управляемая проницаемость

- Фагоцитоз и пиноцитоз мембраны

- Экзоцитоз на мембране клетки

- Наличие электрических и химических потенциалов на мембране клетки

- Изменения электрического потенциала мембраны

- Раздражимость мембраны. Обусловлена она наличием на мембране специфических рецепторов, которые контактируют с сигнальными веществами. В результате этого, зачастую, меняется состояние, как самой мембраны, так и всей клетки. После соединения с лагандами (управляющими веществами), молекулярные рецепторы, расположенные на мембране, запускают биохимические процессы.

- Каталитическая ферментативная активность мембраны клетки. Ферменты действуют как снаружи мембраны клетки, так и изнутри клетки.

Основные функции клеточной мембраны

Основное в работе клеточной мембраны – осуществлять и контролировать обмен между клеткой и межклеточным веществом. Это возможно благодаря проницаемости мембраны. Регулировка же пропускной способности мембраны осуществляется благодаря регулируемой проницаемости клеточной мембраны.

Строение мембраны клетки

Клеточная мембрана трехслойна. Центральный слой – жировой служит, непосредственно, для изоляции клетки. Водорастворимые вещества он не пропускает, только жирорастворимые.

Остальные же слои – нижний и верхний представляют собой белковые образования, разбросанные в виде островков на жировом слое.Между этими островками скрываются транспортёры и ионные канальцы, которые служат именно для транспорта водорастворимых веществ как в саму клетку, так и за ее пределы.

Более подробно, жировая прослойка мембраны состоит из фосфолипидов и сфинголипидов.

Важность ионных канальцев мембраны

Так как через липидную пленку проникают только жирорастворимые вещества: газы, жиры и спирты, а клетке необходимо постоянно вводить и выводить водорастворимые вещества, к которым относятся ионы. Именно для этих целей служат транспортные белковые структуры, образованные двумя другими слоями мембраны.

Подобные белковые структуры состоят из 2 типов белков – каналоформеров, которые формируют отверстия в мембране и белков - транспортеров, которые с помощью ферментов цепляют к себе ипроводят сквозь нужные вещества.

Будьте здоровыми и эффективными для себя!