Как определить систему вала. Определение и обозначение посадок

Любая операция сборки деталей заключается в необходимости соеди­нить или, как говорят, «посадить» одну деталь на другую - отсюда и ус­ловно принятое в технике выражение «посадка» для обозначения ха­рактера соединения деталей. Одни соединения допускают определенную свободу движения деталей относительно друг друга. Другие, наоборот, обеспечивают неподвижность соединенных деталей. Так, например, ра­бочий шкив ременной передачи должен быть плотно (неподвижно) наса­жен на вал, а холостой шкив может свободно вращаться на неподвижной оси.

Применение тех или иных посадок соответствует замыслу конструктора при проектировании машины. Таким образом, под словом «посадка» пони­мается не конструкция самого соединения, а степень подвижности собран­ных деталей относительно друг друга. Сборку двух деталей можно осущест­вить с зазором (одна деталь свободно входит в другую) или с натягом (для соединения таких деталей необходимо применить усилие).

Зазором (рис. 119,I) называется разность размеров отверстия D и ва­ла d, если размер отверстия больше размера вала. Зазор обеспечивает свобо­ду относительного перемещения деталей. Чем больше зазор, тем больше свобода движений в соединении.

Натягом (рис. 119, II) называется разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия.

Рис. 119

Посадки разделяют на три группы: посадки с зазором (подвижные посадки). Для этих посадок диа­метр отверстия больше диаметра вала, благодаря этому детали в собранном состоянии обладают свободой взаимного перемещения.

При конструировании машин подвижные посадки выбирают по услови­ям, в которых будет работать проектируемое соединение. При этом определяется такой зазор при котором коэффициент трения минимален. По­движные посадки разделяются между собой установленной величиной за­зора. Каждая следующая посадка в приведенной в табл. 10 последователь­ности характеризуется относительно меньшим зазором по сравнению с предыдущей;

Посадки с натягом (неподвижные посадки). Для этих посадок диаметр отверстия меньше диаметра вала, что обеспечивает соединение с натягом. Посадки этой группы характеризуются неразъемностью соеди­нений. Такие соединения осуществляется под прессом, при нагреве охва­тывающей детали (отверстия) или охлаждения охватываемой (вала).

Неподвижные посадки применяют в том случае, когда возникает необхо­димость исключить возможность относительного перемещения соединен­ных деталей или передавать крутящий момент без дополнительных средств крепления (шпонки, винты установочные, штифты и т. п.);

Переходные посадки . Переходными эти посадки названы по­тому, что до сборки вала и отверстия нельзя сказать, что будет в соедине­нии - зазор или натяг. Это означает, что в переходных посадках диаметр отверстия может быть меньше, больше или равен диаметру вала (рис. 119, III).

Группа переходных посадок предназначается для соединений, которые подвергаются разборке и сборке под легкими ударами деревянного или свинцового молотка.

Система ИСО содержит 27 обозначений полей допусков для отверстия, столько же - для валов. Путем сочетания разноименных полей допусков можно получить свыше 700 различных посадок, в которых отверстие и вал будут обозначаться не только одинаковыми, но и разными буквами. Однако одновременное применение всех возможных полей допусков неэкономич­но, так как это затруднило бы унификацию изделий, размерных инстру­ментов и калибров. Для практического применения рекомендуется ограни­ченное число предпочтительных посадок (27 посадок в интервалах разме­ров от 1 до 500 мм).

Ниже в табл. 10 приводится обозначение полей допусков по группам. Со­поставляя каждую пару одинаковых по значению букв и читая эти ряды слева направо, можно получить 11 посадок с последовательно уменьшаю­щимися зазорами до нулевого, далее 4 переходные посадки и 12 посадок с увеличивающимся натягом. Указанные поля допусков определенным обра­зом сгруппированы по квалитетам.

Табл. 10


Поле допуска в ЕСДП образуется сочетанием основного отклонения (ха­рактеристика расположения) и квалитета (характеристика допуска). Соот­ветственно условное обозначение поля допуска состоит из буквы основного отклонения и числа - номера квалитета, например: поля допусков валов h6; d10; s7; поля допусков отверстий Н6,D10, S7.

Посадка образуется сочетанием полей допусков отверстия и вала. Услов­ное обозначение посадки выполняется в виде дроби или в одну строку, при­чем в числителе или на первом месте указывается обозначение поля допус­ка отверстия, а в знаменателе или на втором месте - вала, например: H8/f7; H8-f7.

Две или несколько подвижно или неподвижно соединяемых деталей называют сопрягаемыми . Поверхности, по которым происходит соединение деталей, называют сопрягаемыми. Остальные поверхности называют несопрягаемыми (свободными).

Рис. 1.6. Сопряжение вала и отверстия

Посадкой называется характер соединения деталей, определяе­мый величиной получающихся в нем зазоров или натягов.

Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению.

Различают три типа посадок: с зазором, с натягом и переход­ные посадки.

При графическом изображение поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рис.1.7).

Посадки с зазором . Посадкой с зазором называется посадка, при которой всегда обеспечивается зазор в соединении, т.е. наименьший предельный размер отверстия больше наибольшего предельного размера вала или равен ему (поле допуска отвер­стия расположено над полем допуска вала) (рис. 1.8).

Зазор S - положительная разность размеров отверстия и вала. Зазор обеспечивает возможность относительного перемещения сопряженных деталей.

Основными характеристиками посадки с зазором являются:

наименьший зазор S min = D min - d max ;

наибольший зазор S max = D max - d min ;

действительный зазор S Д = D Д – d Д;

допуск зазора T s = S max - S min = (D max - d min) - (D min - d max) =(D max - D min)+(d max - d min)=T D +T d

Рис. 1.8. Схемы расположения полей допусков при посадках с зазором

Посадки с натягом . Посадкой с натягом называется посадка, при которой всегда обеспечивается натяг в соединении, т.е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала или равен ему (поле допуска отвер­стия расположено под полем допуска вала) (рис. 1.9).

Натяг N - положительная разность размеров вала и отверстия до сборки. Натяг обеспечивает взаимную неподвижность деталей после их сборки

Рис. 1.9. Схемы расположения полей допусков при посадках с натягом

Основными характеристиками посадки с натягом являются:

наибольший натяг N max = d max - D min ;

наименьший натяг N min = d min - D max ;

действительный натяг N Д = d Д -D Д,

допуск натяга T N =N max -N min =(d max -D min)-(d min -D max)=(d max -d min)+(D max -D min)=T d + T D .

Переходные посадки . Переходной посадкой называется посадка, при которой возможно получение как зазора, так и натяга в зависимости от действительных размеров отверстия и вала (поля допусков отверстия и вала перекрываются частично или полно­стью) (рис. 1.10).

Переходные посадки используют для неподвижных соединений в тех случаях, когда при эксплуатации необходимо проводить разборку и сборку, а также когда к центрированию деталей предъяв­ляются повышенные требования.

Рис. 1.10. Схемы расположения полей допусков при переходных посадках

Переходные посадки, как правило, требуют дополнительного закрепления сопрягаемых деталей, чтобы гарантировать неподвиж­ность соединений (шпонки, штифты, шплинты и другие крепеж­ные средства).

Основными характеристиками переходных посадок являются:

наибольший натяг N max = d max -D min ;

наибольший зазор S max = D max -d min

действительный натяг N Д = d Д -D Д

действительный зазор S Д = D Д -d Д;

допуск посадки (натяга) T N =N max +S max =(d max -D min)+(D max -d min)=(d max -d min)+(D max -D min)=T d +T D

Лекция

Тема № 5 Допуски и посадки


Введение

В процессе разработки изделия (машины, агрегата, узла) необходимо исходить из заданного уровня стандартизации и унификации, который определяется коэффициентами применяемости, повторяемости и межпроектной унификации. С повышением значений этих коэффициентов повышается экономическая эффективность разрабатываемого изделия в процессе его производства и эксплуатации. Для повышения уровня стандартизации и унификации необходимо, уже на стадии при проектирования изделия, использовать большее число составных частей, выпускаемых промышленностью, и стремиться к разумному ограничению разработки оригинальных составных частей. При этом, основным вопросом в процессе разработки является точность взаимозаменяемых деталей, узлов и комплектующих изделий, прежде всего по геометрическим параметрам.

Взаимозаменяемость деталей, узлов и агрегатов позволяет осуществить агрегатирование, как один из методов стандартизации, организовать поставку запасных частей, облегчить ремонт, особенно в сложных условиях, сведя его к простой замене изношенных частей.


Взаимозаменяемость - свойство независимо изготовленных деталей занимать свое место в сборочной единице без дополнительной механической или ручной обработки при сборке, обеспечивая при этом нормальную работу собираемых изделий (узлов, механизмов).

Из самого определения взаимозаменяемости следует, что она является предпосылкой расчленения производства, т.е. независимого изготовления деталей, узлов, агрегатов, которые в последующем собираются последовательно в сборочные единицы, а сборочные единицы - в общую систему (механизм, машину, прибор). Сборку можно вести двумя способами: с подгонкой и без подгонки собираемых деталей или сборочных единиц. Сборку без подгонки применяют в массовом и поточном производствах, а с подгонкой - в единичном и мелкосерийном. При сборке без подгонки детали должны быть изготовлены с необходимой точностью. Однако взаимозаменяемость не обеспечивается одной только точностью геометрических параметров. Необходимо, чтобы материал, долговечность деталей, сборочных единиц и комплектующих изделий был согласован с назначением и условиями работы конечного изделия. Такая взаимозаменяемость называется функциональной , а взаимозаменяемость по геометрическим параметрам является частным видом функциональной взаимозаменяемости.

Взаимозаменяемость бывает полная и неполная, внешняя и внутренняя.

Полная взаимозаменяемость позволяет получить заданные показатели качества без дополнительных операций в процессе сборки.

При неполной взаимозаменяемости во время сборки сборочных единиц и конечных изделий допускаются операции, связанные с подбором и регулировкой некоторых деталей и сборочных единиц. Она позволяет получать заданные технические и эксплуатационные показатели готовой продукции при меньшей точности деталей. При этом, функциональная взаимозаменяемость должна быть только полной, а геометрическая - как полной, так и неполной.

Внешняя взаимозаменяемость - это взаимозаменяемость узлов и комплектующих изделий по эксплуатационным параметрам и присоединительным размерам. Например, замена электродвигателя. Его эксплуатационными параметрами будут - мощность, частота вращения, напряжение, ток; к присоединительным размерам относятся диаметры, число и расположение отверстий в лапах электродвигателя и др.

Внутренняя взаимозаменяемость обеспечивается точностью параметров, которые необходимы для сборки деталей в узлы, а узлов в механизмы. Например, взаимозаменяемость шарикоподшипников или роликов подшипников качения, узлов ведущего и ведомого валов коробки передач и т.д.

Принципы взаимозаменяемости распространяются на детали, сборочные единицы, комплектующие изделия и конечную продукцию.

Взаимозаменяемость обеспечивается точностью параметров изделий, в частности - размерами. Однако, в процессе изготовления неизбежно возникают погрешности Х, численные значения которых находят по формуле

где Х - заданное значение размера (параметра);

Х i - действительное значение этого же параметра.

Погрешности подразделяются на систематические, случайные и грубые (промахи).

Влияние случайных погрешностей на точность измерения можно оценивать методами теории вероятностей и математической статистики. Многочисленными опытами доказано, что распределение случайных погрешностей чаще всего подчиняется закону нормального распределения, который характеризуется кривой Гаусса (рисунок 1).


Рисунок 1 - Законы распределения случайных погрешностей

а - нормальный; б – Максвелла; в – треугольника (Симпсона); г - равновероятностный.

Максимальная ордината кривой соответствует среднему значению данного размера (при неограниченном числе измерений называется математическим ожиданием и обозначается М(Х).

По оси абсцисс откладывают случайные погрешности или отклонения от . Отрезки, параллельные оси ординат, выражают вероятность появления случайных погрешностей соответствующей величины. Кривая Гаусса симметрична относительно максимальной ординаты. Поэтому отклонения от одинаковой абсолютной величины, но разных знаков одинаково возможны. Форма кривой показывает, что малые отклонения (по абсолютному значению) появляются значительно чаще, чем большие, а появление весьма больших отклонений практически маловероятно. Поэтому допустимые погрешности ограничиваются некоторыми предельными значениями (V - практическое поле рассеяния случайных погрешностей, равное разности между наибольшими и наименьшими измеренными размерами в партии деталей). Значение определяют из условия достаточной точности при оптимальных затратах на изготовление изделий. При регламентированном поле рассеяния за пределы может выходить не более чем 2,7 % случайных погрешностей. Это значит, что из 100 обработанных деталей может оказаться не более трех бракованных. Дальнейшее уменьшение процента появления бракованных изделий в технико-экономическом отношении не всегда целесообразно, т.к. приводит к чрезмерному увеличению практического поля рассеяния, а, следовательно, увеличению допусков и снижению точности изделий. Форма кривой зависит от методов обработки и измерения изделий; точные методы дают кривую 1, имеющую поле рассеяния V 1 ; методом высокой точности соответствует кривая 2, для которой V 2 V 1).

В зависимости от принятого технологического процесса, объема производства и других обстоятельств, случайные погрешности могут распределяться не по закону Гаусса, а по равновероятностному закону (рис.1б), по закону треугольника (рис.1в), по закону Максвелла (рис.1г) и др. Центр группирования случайных погрешностей может совпадать с координатой среднего размера (рис.1а) или смещаться относительно ее (рис.1г).

Нельзя полностью устранить влияние причин, вызывающих погрешности обработки и измерения, можно лишь уменьшить погрешность, применяя более совершенные технологические процессы обработки. Точность размера (любого параметра) называют степень приближения действительного размера к заданному, т.е. точность размера определяется погрешностью. С уменьшением погрешности точность увеличивается и наоборот.

На практике взаимозаменяемость обеспечивается ограничением погрешностей. С уменьшением погрешностей действительные значения параметров, в частности размеров, приближаются к заданным. При небольших погрешностях действительные размеры так мало отличатся от заданных, что их погрешность не ухудшает работоспособность изделий.

2.Допуски и посадки. Понятие о квалитете

Основные термины и определения установлены ГОСТ 25346, ГОСТ 25347, ГОСТ 25348 устанавливают допуски и посадки для размеров менее 1 мм, до 500 мм, свыше 500 до 3150 мм.

Вывод формул (7) и (8) производится из следующих соображений. Как следует из формул (2) и (3) наибольший и наименьший предельные размеры равны суммам номинального размера и соответствующего предельного отклонения:

(9)

(10)

Подставив в формулу (5) значения предельных размеров из формулы

Сократив подобные члены, получим формулу (7). Аналогично выводится формула (8).



Рисунок - Поля допусков отверстия и вала при посадке с зазором (отклонения отверстия положительные, отклонения вала отрицательные)

Допуск всегда является положительной величиной независимо от способа его вычисления.

ПРИМЕР. Вычислить допуск по предельным размерам и отклонениям. Дано: = 20,010 мм; = 19,989 мм; = 10 мкм; = -11 мкм.

1). Вычисляем допуск через предельные размеры по формуле (6):

Td = 20,010 - 19,989 = 0,021 мм

2). Вычисляем допуск по предельным отклонениям по формуле (8):

Td = 10 - (-11) = 0,021 мм

ПРИМЕР . По заданным условным обозначениям вала и отверстия (вал -  , отверстие  20), определить номинальный и предельные размеры, отклонения и допуски (в мм и мкм).

2.2 Единицы допуска и понятие о квалитетах

Точность размеров определяется допуском - с уменьшением допуска точность повышается, и наоборот.

Каждый технологический метод обработки деталей характеризуется своей экономически обоснованной оптимальной точностью, но практика показывает, что с увеличением размеров возрастают технологические трудности обработки деталей с малыми допусками и оптимальные допуски при неизменных условиях обработки несколько увеличиваются. Взаимосвязь между экономически достижимой точностью и размерами выражается условной величиной, называемой единицей допуска.

Единица допуска () выражает зависимость допуска от номинального размера и служит базой для определения стандартных допусков.

Единицу допуска, мкм, вычисляют по формулам:

для размеров до 500 мм

для размеров свыше 500 до 10000 мм

где - средний диаметр вала в мм.

В приведенных формулах первое слагаемое учитывает влияние погрешностей обработки, а второе - влияние погрешностей измерений и температурных погрешностей.

К размерам, даже имеющим одинаковые значение, могут предъявляться различные требования в отношении точности. Это зависит от конструкции, назначения и условий работы детали. Поэтому вводится понятие квалитет .

Квалитет - характеристика точности изготовления детали, определяемая совокупностью допусков, соответствующих одинаковой степени точности для всех номинальных размеров.

Допуск (Т) для квалитетов, за некоторым исключением, устанавливают по формуле

где а - число единиц допуска;

i(I) - единица допуска.

По системе ИСО для размеров от 1 до 500 мм установлено 19 квалитетов . Под каждым из них понимают совокупность допусков, обеспечивающих постоянную относительную точность для определенного диапазона номинальных размеров.

Допуска 19 квалитетов в порядке убывания точности ранжируют: 01, 0, 1, 2, 3,..17, и условно обозначают IT01, IT0, IT1...IT17. здесь IT - это допуска отверстий и валов, что означает “допуск ИСО”.

В пределах одного квалитета “а” постоянна, поэтому все номинальные размеры в каждом квалитете имеют одинаковую степень точности. Однако допуски в одном и том же квалитете для разных размеров все же изменяются, так как с увеличением размеров увеличивается единица допуска, что следует из выше приведенных формул. При переходе от квалитетов высокой точности к квалитетам грубой точности допуски увеличиваются вследствие увеличения числа единиц допуска, поэтому в разных квалитетах изменяется точность одних и тех же номинальных размеров.

Из всего изложенного следует, что:

Единица допуска зависит от размера и не зависит от назначения, условий работы и способов обработки деталей, то есть единица допуска позволяет оценить точность различных размеров и является общей мерой точности или масштабом допусков разных квалитетов;

Допуски одинаковых размеров в разных квалитетах различны, так как зависят от числа единиц допуска “а”, то есть квалитеты определяют точность одинаковых номинальных размеров;

Различные способы обработки деталей обладают определенной экономически достижимой точностью: “черновое” точение позволяет обрабатывать детали с грубыми допусками; для обработки с весьма малыми допусками применяют тонкое шлифование и т.д., поэтому квалитеты фактически определяют технологию обработки деталей.

Область применения квалитетов:

Квалитеты от 01-го до 4-го используют при изготовлении концевых мер длины, калибров и контркалибров, деталей измерительных средств и других высокоточных изделий;

Квалитеты от 5-го до 12-го применяют при изготовлении деталей, преимущественно образующих сопряжения с другими деталями различного типа;

Квалитеты от 13-го до 18-го используют для параметров деталей, не образующих сопряжений и не оказывающих определяющего влияния на работоспособность изделий.Предельные отклонения определяют по ГОСТ 25346-89 .

Условное обозначение полей допусков по ГОСТ 25347-82 .

Условное обозначение предельных отклонений и посадок

Предельные отклонения линейных размеров указывают на чертежах условными (буквенными) обозначениями полей допусков или числовыми значениями предельных отклонений, а также буквенными обозначениями полей допусков с одновременным указанием справа в скобках числовых значений предельных отклонений (рис. 5.6, а... в). Посадки и предельные отклонения размеров деталей, изображенных на чертеже в собранном виде, указывают дробью: в числителе - буквенное обозначение или числовое значение предельного отклонения отверстия либо буквенное обозначение с указанием справа в скобках его числового значения, в знаменателе - аналогичное обозначение поля допуска вала (рис. 5.6, г, д). Иногда для обозначения посадки указывают предельные отклонения только одной из сопрягаемых деталей (рис.5.6, е).

Рис. 5.6. Примеры обозначения полей допусков и посадок на чертежах


В условных обозначениях полей допусков обязательно указывать числовые значения предельных отклонений в следующих случаях: для размеров, не включенных в ряд нормальных линейных размеров, например 41,5 H7 (+0,025) ; при назначении предельных отклонений, условные обозначения которых не предусмотрены ГОСТ 25347-82 например, для пластмассовой детали (рис. 5.6, ж).

Предельные отклонения следует назначать для всех размеров, проставленных на рабочих чертежах, включая несопрягаемые и неответственные размеры. Если предельные отклонения для размера не назначены, возможны лишние затраты (когда стремятся получить этот размер более точным, чем нужно) или увеличение массы детали и перерасход металла.

Для поверхности, состоящей из участков с одинаковым номинальным размером, но разными предельными отклонениями, наносят границу между этими участками тонкой сплошной линией и номинальный размер с соответствующими предельными отклонениями указывают для каждого участка отдельно.

Точность гладких элементов металлических деталей, если для них отклонения не указывают непосредственно после номинальных размеров, а оговаривают общей записью, нормируют либо квалитетами (от12 до 17 для размеров от 1 до 1000 мм), обозначаемыми IT, либо классами точности (точный, средний, грубый и очень грубый), установленными ГОСТ 25670-83. Допуски по классам точности обозначают t 1 , t 2, t 3 и t 4 - соответственно для классов точности - точный, средний, грубый и очень грубый.

Неуказанные предельные отклонения для размеров валов и отверстий допускается назначать как односторонними, так и симметричными; для размеров элементов, не относящихся к отверстиям и валам, назначают только симметричные отклонения. Односторонние предельные отклонения можно назначать как по квалитетам (+ITили -IT), так и по классам точности (± t/2), но допускается и по квалитетам (± Т/2). Квалитету 12 соответствует класс точности «точный», квалитету 14 - «средний», квалитету 16 - «грубый», квалитету 17 - «очень грубый». Числовые значения неуказанных предельных отклонений приведены в ГОСТ 25670-83. Для размеров металлических деталей, обработанных резанием, неуказанные предельные отклонения предпочтительно назначать по квалитету 14 или классу точности «средний». Неуказанные предельные отклонения узлов, радиусов закругления и фасок назначают по ГОСТ 25670-83 в зависимости от квалитета или класса точности неуказанных предельных отклонений линейных размеров.

Соединение деталей (сборочных единиц) должно обеспечивать точность их положения или перемещения, надежность эксплуатации и простоту ремонта. В этой связи к конструкции соединений могут предъявляться различные требования. В одних случаях необходимо получить подвижное соединение с зазором, в других - неподвижное соединение с натягом.

Зазором S называют разность размеров отверстия и вала, если размер отверстия больше размера вала, т.е. S = D - d .

Натягом N называют разность размеров отверстия и вала, если размер вала больше размера отверстия. При подобном соотношении диаметров d и D натяг можно считать отрицательным зазором, т.е.

N = - S = - ( D - d ) = d - D , (12)

Зазоры и натяги обеспечиваются не только точностью размеров отдельно взятых деталей, но, главным образом, соотношением размеров сопрягаемых поверхностей - посадкой.

Посадкой называют характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов.

В зависимости от расположения полей допусков отверстия и вала посадки подразделяют на три группы:

Посадки с зазором (обеспечивают зазор в соединении);

Посадки с натягом (обеспечивают натяг в соединении);

Переходные посадки (дают возможность получать в соединениях как зазоры, так и натяги).

Посадки с зазором характеризуются предельными зазорами - наибольшим и наименьшим. Наибольший зазор S max равен разности наибольшего предельного размера отверстия и наименьшего предельного размера вала. Наименьший зазор S min равен разности наименьшего предельного размера отверстия и наибольшего предельного размера вала. К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала.

Для образования натяга диаметр вала до сборки обязательно должен быть больше диаметра отверстия. В собранном состоянии диаметры обеих деталей в зоне сопряжения уравниваются. Наибольший натяг N max равен разности наибольшего предельного размера вала и наименьшего предельного размера отверстия. Наименьший натяг N min равен разности наименьшего предельного размера вала и наибольшего предельного размера отверстия.

N max = d max -D min ; N min = d min -D max .

Предельные натяги, как и предельные зазоры, удобно вычислять через предельные отклонения:

, (13)

Переходные посадки. Основной особенностью переходных посадок является то, что в соединениях деталей, относящихся к одним и тем же партиям, могут получаться или зазоры, или натяги. Переходные посадки характеризуются наибольшими зазорами и наибольшими натягами.

На основании расчетов сделаем следующие выводы:

Так как отрицательные зазоры равны положительным натягам и наоборот, то для определения в переходной посадке значений S max и N max достаточно вычислить оба предельных зазора или оба предельных натяга;

При правильном вычислении S min или N min обязательно окажутся отрицательными, и по абсолютным значениям будут равняться соответственно N max или S max .

Допуск посадки ТП равен сумме допусков отверстия и вала. Для посадок с зазором допуск посадки равен допуску зазора или разности предельных зазоров:

ТП = TS = S max - S min , (14)

Аналогично можно доказать, что для посадок с натягом допуск посадки равен допуску натяга или разности натягов:

ТП = TN = N max - N min , (15)

3.1 Посадки в системе отверстия и в системе вала

Деталь, у которой положение поля допуска не зависит от вида посадки, называют основной деталью системы. Основная деталь - это деталь, поле допуска которой является базовым для образования посадок, установленных в данной системе допусков и посадок.

Основное отверстие - отверстие, нижнее отклонение которого равно нулю EI = 0. У основного отверстия верхнее отклонение всегда положительное и равно допуску ES = 0 = Т; поле допуска расположено выше нулевой линии и направлено в сторону увеличения номинального размера.

Основной вал - вал, верхнее отклонение которого равно нулю es = 0. У основного вала Td = 0(ei) = поле допуска расположено ниже нулевой линии и направлено в сторону уменьшения номинального размера.

В зависимости от того, какая из двух сопрягаемых деталей является основной, системы допусков и посадок включают два ряда посадок: посадки в системе отверстия - различные зазоры и натяги получаются соединением различных валов с основным отверстием; посадки в системе вала - различные зазоры и натяги получаются соединением различных отверстий с основным валом.

В системе вала предельные размеры отверстий для каждой посадки различны, и для обработки потребуется три комплекта специальных инструментов. Посадки системы вала применяют при соединении нескольких деталей с гладким валом (штифтом) по разным посадкам. Например, в приборостроении точные оси малого диаметра (менее 3 мм) часто изготовляют из гладких калиброванных прутков.

Для получения разнообразных посадок в системе отверстия требуется значительно меньше специальных инструментов для обработки отверстий. По этой причине данная система имеет преимущественное применение в машиностроении.

Дополнительно

Калибры для гладких цилиндрических деталей. Калибры являются основным средством контроля деталей. Их используют для ручного контроля и широко применяют в автоматических средствах контроля деталей. Калибры обеспечивают высокую надежность контроля.

По назначению калибры делят на две основные группы: рабочие калибры - проходные Р-ПР и непроходные - Р-НЕ; контрольные калибры - К-РП, К-НЕ и К-И.

Рабочие калибры ПР и НЕ предназначены для контроля изделий в процессе их изготовления. Этими калибрами пользуются рабочие и контролеры ОТК завода-изготовителя.

Рабочие калибры называют предельными, так как их размеры соответствуют предельным размерам контролируемых деталей. Предельные калибры позволяют определить, находятся ли действительные размеры деталей в пределах допуска. Деталь считают годной, если она проходит в проходной калибр и не проходит в непроходной калибр.

Номинальными размерами калибров называют размеры, которые должны были бы иметь калибры при идеально точном их изготовлении. При этом условии номинальный размер проходной скобы будет равен наибольшему предельному размеру вала, а номинальный размер непроходной скобы - наименьшему предельному размеру вала. Номинальный размер проходной пробки будет равен наименьшему предельному размеру отверстия, а номинальный размер непроходной пробки - наибольшему предельному размеру отверстия.

К контролю предъявляют следующие требования: контроль должен быть высокопроизводительным; время, потребное для контроля, должно быть по возможности меньше времени, необходимого для изготовления детали; контроль должен быть надежным и экономически целесообразным.

Экономическая целесообразность контроля определяется стоимостью контрольных средств, износоустойчивостью измерительных поверхностей, величиной сужения табличного поля допуска детали.

Например, наибольшее сужение поля допуска получается в том случае, когда действительные размеры калибров совпадают с их предельными размерами, расположенными внутри поля допуска детали.

Суженный за счет калибров табличный допуск называется производственным. Расширенный за счет калибров допуск называется гарантированным. Чем меньше производственный, тем дороже обходится изготовление деталей, особенно в более точных квалитетах.

Предельными калибрами проверяют годность деталей с допуском от IT6 до IT 17, особенно в массовом и крупносерийном производствах.

В соответствии с принципом Тейлора проходные пробки и кольца имеют полные формы и длины, равные длинам сопряжении, а непроходные калибры часто имеют неполную форму: например, применяют скобы вместо колец, а также пробки, неполные по форме поперечного сечения и укороченные в осевом направлении. Строгое соблюдение принципа Тейлора сопряжено с определенными практическими неудобствами.

Контрольные калибры К -И применяют для установки регулируемых калибров-скоб и контроля нерегулируемых калибров-скоб, которые являются непроходными и служат для изъятия из эксплуатации вследствие износа проходных рабочих скоб. Несмотря на малый допуск контрольных калибров, они все же искажают установленные поля допусков на изготовление и износ рабочих калибров, поэтому контрольные калибры по возможности не следует применять. Целесообразно, особенно в мелкосерийном производстве, контрольные калибры заменять концевыми мерами или использовать универсальные измерительные приборы.

ГОСТ 24853-81 на гладкие калибры устанавливает следующие допуски на изготовление: Н - рабочих калибров (пробок) для отверстий (рис. 5.9, a) (H s - тех же калибров, но со сферическими измерительными поверхностями); Н\ - калибров (скоб) для валов (рис. 5.9, б); Н р - контрольных калибров для скоб.

Для проходных калибров, которые в процессе контроля изнашиваются, кроме допуска на изготовление, предусматривается допуск на износ. Для размеров до 500 мм износ калибров ПР с допуском до IT 8 включительно может выходить за границу поля допуска деталей на величину у для пробок и у 1 для скоб; для калибров ПР с допусками от IT 9 до IT17 износ ограничивается проходным пределом, т.е. у = 0 и у 1 =0. Следует отметить, что поле допуска на износ отражает средний возможный износ калибра.

Для всех проходных калибров поля допусков Н (Н s) и Н 1 сдвинуты внутрь поля допуска изделия на величину z для калибров-пробок и z 1 для калибров-скоб.

При номинальных размерах свыше 180 мм поле допуска непроходного калибра также сдвигается внутрь поля допуска детали на величину а для пробок и а] для скоб, создавая так называемую зону безопасности, введенную для компенсации погрешности контроля калибрами соответственно отверстий и валов. Поле допуска калибров НЕ для размеров до 180 мм симметрично и соответственно  = 0 и  l =0.

Сдвиг полей допусков калибров и границ износа их проходных сторон внутрь поля допуска детали позволяет устранить возможность искажения характера посадок и гарантировать получение размеров годных деталей в пределах установленных полей допусков.

По формулам ГОСТ 24853-81 определяют исполнительные размеры калибров. Исполнительными называют предельные размеры калибра, по которым изготовляют новый калибр. Для определения этих размеров на чертеже скобы проставляют наименьший предельный размер с положительным отклонением; для пробки и контрольного калибра - их наибольший предельный размер с отрицательным отклонением.

При маркировке на калибр наносят номинальный размер детали, для которого предназначен калибр, буквенное обозначение поля допуска изделия, числовые значения предельных отклонений изделия в миллиметрах (на рабочих калибрах), тип калибра (например, ПР, НЕ, К -И) и товарный знак завода-изготовителя.


Заключение

На сегодняшнем занятии мы рассмотрели следующие учебные вопросы:

Общие сведения о взаимозаменяемости.

Допуски и посадки. Понятие о квалитете.

Выбор системы посадок, допусков и квалитетов.

Задание на самоподготовку

(1 час на самоподготовку)

Дополнить конспект лекции.

Получить литературу:

Основная

Дополнительная

1. Сергеев А.Г., Латышев М.В., Терегеря В.В. Стандартизация, метрология, сертификация. Учебное пособие. – М.: Логос, 2005. 560 с.(стр. 355-383)

2. Лифиц И.М. Стандартизация, метрология и сертификация. Учебник. 4-е изд. –М.: Юрайт. 2004. 335 с.

3. Эксплуатация вооружения химических войск и средств защиты. Учебное пособие. ВАХЗ, дсп. 1990. (инв. 2095).

4. Контроль качества разработки и производства ВВТ. Под редакцией А.М. Смирнова. дсп. 2003. 274 с. (инв. 3447).

В ходе занятия быть готовыми:

1. Ответить на вопросы преподавателя.

Представить рабочие тетради с отработанными вопросами согласно задания.

Литература

взаимозаменяемость деталь механический обработка

1. Стандартизация, метрология, сертификация. Под ред. Смирнова А.М. ВУ РХБЗ, дсп, 2001. 322 с. (инв. 3460).

2. Сергеев А.Г., Латышев М.В., Терегеря В.В. Стандартизация, метрология, сертификация. Учебное пособие. – М.: Логос, 2005. 560 с.

3. Технология металлов. Учебник. Под ред. В.А. Бобровского. -М. Воениздат. 1979, 300 с.

В конструкторской практике применяются в основном методы выбора допусков и посадок, приве­денные ниже.

Методы подобия. Он заключает­ся в том, что конструктор отыски­вает в однотипных или других ма­шинах, ранее сконструированных и оправданных себя в эксплуата­ции, случаи применения состав­ных частей (сборочных единиц), подобных проектируемой, и по аналогии назначает допуски и по­садки.

Расчетный метод. Этот метод требует согласования квалитетов, допусков и посадок при проектировании машин и других изделий с расчетными величинами.

При выборе и назначении допусков и посадок конструктор всегда исхо­дит из того, что изготовление деталей по квалитету, соответствующему большей точности, т. е. с малым допуском, связано с повышением себесто­имости из-за. больших трудовых и материальных затрат на оборудование, приспособления, инструмент и контроль. Но при этом обеспечиваются вы­сокая точность сопряжений, высокие эксплуатационные показатели изде­лия в целом.

Изготовление деталей по квалитетам с расширенными допусками про­ще, не требует точного оборудования и отделочных технологических про­цессов, однако точность сопряжений и, следовательно, долговечность ма­шин снижены.

Таким образом, перед конструкторами всегда стоит задача - рационально, на основе технико-экономических расчетов, разрешать противоречия между эксплуатационными требованиями и технологическими возможностями, ис­ходя в первую очередь из выполнения эксплуатационных требований.

В учебной практике, видимо, проще пользоваться методом подобия. Вместе с тем при необходимости уточнений следует уметь обращаться к справочным таблицам стандартных величин допусков и предельных от­клонений.

Приведем пример. Предположим, что в период выполняемой вами ра­боты возникла необходимость уточнить характер соединения двух дета­лей и назначить для каждой рациональный допуск. Вначале, пользуясь табл. 10 следует установить, какая из трех групп посадок необходима для выполнения данным соединением рабочей функции. При этом надо учи­тывать, что каждое последующее буквенное обозначение основного откло­нения зазора и натяга означает соответственно уменьшение зазора и уве­личение натяга.

Теперь обратимся к ГОСТ 25347-82. По содержащейся в нем табл. 17 «Ре­комендуемые посадки в системе отверстия при номинальных размерах от 1 до 500 мм» выбираем для данного сочленения двух деталей посадку, напри­мер, к6. Выдержка из указанной таблицы стандарта приведена в табл. 11.

Из табл. 11 видно, что допуски для отверстий рекомендуется брать на квалитет больше, так как отверстие труднее обработать и измерить. Как уже указывалось, с увеличением квалитета величина допуска становится больше.

Таблица 11

Примичание:

Предпочтительные посадки

Далее, пользуясь этим же стандартом, обращаемся к таблице полей допус­ков 7-го квалитета. Предположим, что необходимо сочленить вал с отверсти­ем диаметром 036 мм. По таблице определяем величину предельных отклоне­ний для отверстия с полем допуска Н7. В интервале размеров от 30 до 40 мм устанавливаем следующие значения предельных отклонений: 0...+25 мкм. Для вала с полем допуска к6 по 6-му квалитету значение предельных отклонений равно: +13...-13 мкм. Теперь на эскизе или чертеже детали с отверстием пишем?36 +0,025 мм; на эскизе или чертеже вала - ?36 +0,003...-0,013 мм. При необходимости подсчитать величину допуска можно пользоваться рекомендациями, ука­занными выше. Выдержка из стандарта приведена в табл. 12.

Если по простому, то допуски и посадки - это система стандартов, которая обеспечивает соединение нескольких деталей в цельный узел, а несколько узлов - в готовую машину или агрегат. Благодаря этой системе в нашем мире ездят автомобили и поезда, летают самолеты и космические корабли, строятся гигантские мосты и теплоходы.

Соединение деталей можно осуществлять без усилий - при этом охватывающая деталь (отверстие) будет больше, чем охватываемая (вал, болт или шпилька). Такому соединению требуется посадка с зазором (например Н8/f7).

Переходная посадка применяется для неподвижных, часто разбираемых соединений. В таком случае две детали будут иметь равные или близкие друг к другу размеры. Пример H7/k6.

В случае, если необходимо «намертво» соединить две детали, то применяют прессовую посадку. В таком соединении отверстие изготавливают меньше (на доли миллиметра) чем вал. Требуется приложить большие усилия, чтобы собрать узел и для этого обычно используют пресс или молоток. Пример прессовой посадки H7/r6.

Номинальный размер - это основной расчетный размер, который указывают на чертеже. Он одинаков для вала и отверстия и от него откладываются отклонения.

Отклонения - это предельные значения размера, которые удовлетворяют требованиям для данного соединения.

Действительный размер - размер, полученный после механической обработки и измеренный с помощью измерительных приборов (штангенциркуля, микрометра). Действительный размер никогда (или очень редко) не получается получить строго со значением номинального, например 30,000 или 55,000. Действительный размер будет отличатся от этого значения в большую или меньшую сторону.

Предельно-допустимым - называется действительный размер, который удовлетворяет требованиям для сборки.

Допуск - это разность между наибольшим предельно-допустимым размером и наименьшим предельно-допустимым размером. Чем меньше допуск, тем точнее нужно изготавливать деталь.

Посадка - это параметр, определяющий характер соединения деталей.

Система допусков и посадок построена по определенным правилам в виде стандартов, обязательных для выполнения всех, кто связан с проектированием, изготовлением и контролем деталей.

Как выбрать посадку?

Можно воспользоваться упрощенной формой подбора посадок. А можно обложится литературой и потратить время на изучение применяемости каждой конкретной посадки.

Если использовать стандартные таблицы посадок, то в первую очередь проектировщик должен стремится использовать посадки «предпочтительного применения». Если из предпочтительных посадок инженера не устроила ни одна из имеющихся посадок, он выбирает из графы «Рекомендуемые посадки». Если и там он не найдет подходящую посадку, то будет смотреть в графу «Дополнительные поля допусков».

Вот список основных, наиболее часто применяемых посадок: Горячая, Прессовая, Легкопрессовая, Глухая, Тугая, Напряженная, Плотная, Скользящая, Движения, Ходовая, Легкоходовая, Широкоходовая и Теплоходовая.

В целях экономии на номенклатуре выпускаемого режущего инструмента были разработаны 2 системы посадок: система Отверстия и система Вала. И тут опять, все, кто связан с проектированием и изготовлением деталей «договорились», что будут по возможности использовать систему Отверстия в первую очередь так как она более рациональна и экономична в плане изготовления на металлообрабатывающих станках. А если это невозможно то только тогда прибегать к системе Вала.

Система Отверстия - это система, в которой для простоты изготовления при любой из выбранных посадок (будь то прессовой или широкоходовой) охватывающая деталь (отверстие) будет иметь одни и те же размеры, а охватываемая (вал) будет отличатся: для прессовой посадки вал будет иметь одни размеры, а например для скользящей посадки вал будет иметь другие размеры.

Система Вала - тут наоборот, различные посадки достигаются путем использования различных размеров отверстий, а размер вала остается неизменным.

Квалитет - это показатель точности посадки и от него зависит величина допуска. Всего существует 18 квалитетов, половина из которых применяется чаще всего. Это 6й, 7, 8, 9, 10, 11,12, 13 и 14 квалитеты. Две сопрягаемые детали должны иметь одинаковые или близкие квалитеты.