Заряженное ядро протон электрон. Основные характеристики протона, нейтрона и электрона


Введение

Существующая в настоящее время теория строения атома не дает ответа на многие вопросы, возникающие при проведении различных практических и экспериментальных работ. В частности, до сих пор не определена физическая сущность электрического сопротивления. Поиск высокотемпературной сверхпроводимости может быть успешным только если знать суть электрического сопротивления. Зная строение атома, можно понять суть электрического сопротивления. Рассмотрим строение атома с учетом известных свойств зарядов и магнитных полей. Наиболее близка к реальности и отвечает экспериментальным данным планетарная модель атома, предложенная Резерфордом. Однако эта модель соответствует только атому водорода.


ГЛАВА ПЕРВАЯ

ПРОТОН И ЭЛЕКТРОН

1. ВОДОРОД

Водород является наименьшим из атомов, поэтому его атом должен содержать стабильную основу как атома водорода, так и остальных атомов. Атом водорода — протон и электрон, при этом электрон вращается вокруг протона. Считается, что заряды электрона и протона — единичные заряды, т. е. минимальные. Представление об электроне как о вихревом кольце с переменным радиусом было введено В. Ф. Миткевичем (Л. 1). Последующие работы Ву и некоторых других физиков показали, что электрон ведет себя подобно вращающемуся вихревому кольцу, спин которого направлен вдоль оси его движения, т. е. то, что электрон — вихревое кольцо, было подтверждено экспериментально. В состоянии покоя электрон, вращаясь вокруг своей оси, магнитных полей не создает. Только при движении электрон образует магнитные силовые линии.

Если заряд протона распределен по поверхности, то, вращаясь вместе с протоном, он будет вращаться вокруг только своей собственной оси. В этом случае, как и электрон, заряд протона не будет образовывать магнитное поле.

Экспериментально установлено, что протон имеет магнитное поле. Для того чтобы протон имел магнитное поле, его заряд должен быть в виде пятна на его поверхности. В этом случае при вращении протона его заряд будет двигаться по окружности, т. е. иметь линейную скорость, что необходимо для получения магнитного поля протона.

Кроме электрона существует и позитрон, отличающийся от электрона только тем, что заряд у него положительный, т. е. заряд позитрона равен заряду протона и по знаку, и по величине. Иными словами, положительный заряд протона есть позитрон, но позитрон — античастица электрона и, следовательно, — вихревое кольцо, которое не может растекаться по всей поверхности протона. Таким образом, заряд протона — позитрон.

При движении электрона, имеющего отрицательный заряд, позитрон протона под действием кулоновских сил должен находиться на поверхности протона на минимальном расстоянии от электрона (Рис. 1). Таким образом, образуется пара противоположных зарядов, связанных между собой максимальной кулоновской силой. Именно потому, что заряд протона — позитрон, его заряд равен электрону по абсолютной величине. Когда весь заряд протона взаимодействует с зарядом электрона, то и нет «лишнего» заряда протона, который бы создавал электрические отталкивающие силы между протонами.

При движении электрона вокруг протона в направлении, указанном на рис. 1, положительный заряд двигается синхронно с ним благодаря кулоновской силе. Движущиеся заряды образуют вокруг себя магнитные поля (Рис. 1). При этом вокруг электрона образуется магнитное поле против часовой стрелки, а вокруг позитрона — магнитное поле по часовой стрелке. В результате между зарядами образуется суммарное поле от двух зарядов, которое препятствует «падению» электрона на протон.

На всех рисунках протоны и нейтроны изображены в виде шаров для упрощения изображения. В действительности они должны быть в виде тороидальных вихревых образований эфира (Л. 3).

Таким образом, атом водорода имеет вид согласно рис. 2 а ). Форма магнитного поля у атома соответствует торообразному магниту с намагниченностью по оси вращения зарядов (Рис. 2 б ).

Еще в 1820 г. Ампер открыл взаимодействие токов — притяжение параллельных проводников с током, текущим в одном направлении. Позднее экспериментально определили, что одноимённые электрические заряды, двигаясь в одном направлении, притягиваются друг к другу (Л. 2).

О том, что заряды должны сближаться, т. е. притягиваться друг к другу, свидетельствует и пинч-эффект. Пинч-эффект — это эффект самостягивания разряда, свойство электрического токового канала в сжимаемой проводящей среде уменьшать своё сечение под действием собственного, порождаемого самим током, магнитного поля (Л. 4).

Так как электрический ток — всякое упорядоченное движение электрических зарядов в пространстве, то траектории электронов и позитронов протонов — это токовые каналы, способные сближаться под действием магнитного поля, порождаемого самими зарядами.

Следовательно, при соединении двух атомов водорода в молекулу одноимённые заряды объединятся в пары и будут продолжать вращение в том же направлении, но уже между протонами, что приведёт к объединению их полей.

Сближение электронов и протонов происходит до момента, когда сила отталкивания одноимённых зарядов станет равной силе, стягивающей заряды от двойного магнитного поля.

На рис. 3 а), б), и в) показано взаимодействие зарядов электрона и протона атомов водорода при соединении их в молекулу водорода.

На рис. 4 изображена молекула водорода с магнитными силовыми линиями, образованными генераторами полей двух атомов водорода. Т. е. молекула водорода имеет один сдвоенный генератор поля и общий магнитный поток, больший в 2 раза.

Мы рассмотрели, как происходит соединение водорода в молекулу, но молекула водорода с другими элементами в реакцию не вступает даже в смеси с кислородом.

Теперь рассмотрим, как происходит разделение молекулы водорода на атомы (Рис. 5). При взаимодействии молекулы водорода с электромагнитной волной электрон приобретает дополнительную энергию, и это выводит электроны на орбитальные траектории (Рис. 5 г ).

Сегодня известны сверхпроводники, которые имеют нулевое электрическое сопротивление. Эти проводники состоят из атомов и могут быть сверхпроводниками только в том случае, если их атомы — сверхпроводники, т. е. и протон тоже. Давно известна левитация сверхпроводника над постоянным магнитом, обусловленная наведением постоянным магнитом в нем тока, магнитное поле которого направлено навстречу полю постоянного магнита. При снятии внешнего поля со сверхпроводника ток в нём исчезает. Взаимодействие протонов с электромагнитной волной приводит к тому, что на их поверхностях наводятся вихревые токи. Так как протоны расположены рядом друг с другом, вихревые токи направляют магнитные поля навстречу друг другу, что увеличивает токи и их поля до разрыва молекулы водорода на атомы (Рис. 5 г ).

Выход электронов на орбитальные траектории и возникновение токов, разрывающих молекулу, происходят одновременно. При отлёте атомов водорода друг от друга вихревые токи исчезают, а электроны остаются на орбитальных траекториях.

Таким образом, на основе известных физических эффектов мы получили модель атома водорода. При этом:

1. Положительные и отрицательные заряды в атоме служат для получения силовых линий магнитных полей, которые, как известно из классической физики, образуются только при движении зарядов. Силовые линии магнитных полей и определяют все внутриатомные, межатомные и молекулярные связи.

2. Весь положительный заряд протона — позитрон — взаимодействует с зарядом электрона, создаёт максимальную кулоновскую силу притяжения для электрона, а равенство зарядов по абсолютной величине исключает у протона наличие отталкивающих сил для соседних протонов.

3. Практически атом водорода представляет собой протонно-электронный магнитный генератор (ПЭМГ), который работает только тогда, когда протон и электрон вместе, т. е. протонно-электронная пара должна быть всегда вместе.

4. При образовании молекулы водорода электроны соединяются в пару и вращаются вместе между атомами, создавая общее магнитное поле, которое удерживает их в паре. Позитроны протонов также соединяются в пару под действием своих магнитных полей и стягивают протоны, образуя молекулу водорода или любую другую молекулу. Соединённые в пару положительные заряды являются главной определяющей силой в молекулярной связи, т. к. позитроны связаны с протонами непосредственно и неотделимы от протонов.

5. Молекулярные связи всех элементов происходят аналогичным образом. Соединение атомов в молекулы других элементов обеспечивается валентными протонами со своими электронами, т. е. валентные электроны участвуют как в соединении атомов в молекулы, так и в разрыве молекулярных связей. Таким образом, каждое соединение атомов в молекулу обеспечивается по одной валентной паре протона с электроном (ВППЭ) от каждого атома на одну молекулярную связь. ВППЭ всегда состоят из протона и электрона.

6. При разрыве молекулярной связи главную роль играет электрон, т. к., выходя на орбитальную траекторию вокруг своего протона, он выдёргивает позитрон протона из пары, находящейся между протонами, на «экватор» протона, обеспечивая этим разрыв молекулярной связи.

7. При образовании молекулы водорода и молекул других элементов образуется двойной ПЭМГ.

Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (N A = 6,02·10 23 моль -1). Масса атомов изменяется в пределах 10 -27 ~ 10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

Ядра с одинаковыми Z , но различными А называются изотопами . Ядра, которые при одинаковом А имеют различные Z , называются изобарами . Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А ) и порядковым номером (Z ):

5. Размер ядра характеризуется радиусом ядра , имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

Удельной энергией связи ядра w свназывается энергия связи, приходящаяся на один нуклон: w св= . Величина w свсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А = const).

Ядерные силы

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил .

3. Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах . Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским ; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А >200 и зарядами ядер Z >82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват .

b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино () с нулевым зарядом и массой.

При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ().

.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.


Что такое "атом"?

До начала 20 века в науке бытовало мнение, что атом - неделимая частица. Однако, это оказалось не так. На самом деле в атом входят, так называемые, субатомные частицы. Для химиков особый интерес представляют: протон , нейтрон и электрон :

В основе атомной единицы массы (а.е.м.) лежит углеродная шкала-12. Атом углерода состоит из 6 протонов и 6 нейтронов и имеет атомную массу = 12 а.е.м. Отсюда, 1 а.е.м. = 1/12 части атома углерода.

Массы протонов и нейтронов практически равны. Масса электрона в 2000 раз меньше.

Несмотря на тот факт, что атом содержит как положительно заряженные частицы, так и отрицательно, его заряд нейтрален. Это объясняется тем, что в атоме одинаковое количество протонов и электронов. Разнозаряженные частицы нейтрализуют друг друга.

Эрнест Резерфорд в 1911 году предложил следующую модель атома: В центре находится положительно заряженное ядро, состоящее из протонов и нейтронов. Вокруг ядра вращаются электроны. Основная часть массы атома сосредоточена в ядре, которое имеет малый размер и чрезвычайно большую плотность (диаметр атома равен 10 -10 м; диаметр ядра атома = 10 -15 м). Говоря языком аллегорий: если представить атом в виде Олимпийского стадиона в Пекине, то ядро атома - это футбольный мяч, которым играют в футбол на этом стадионе.

Внимательный читатель задаст вопрос: "Если в ядре атома находятся положительно заряженные протоны, а одноименные заряды, как известно, отталкиваются, то почему ядро атома не разрушается?" Ученые пришли к выводу, что в ядре атома действуют некие, "склеивающие протоны", силы, которые и удерживают в целости ядро.

Т.к. ядро атома составляет основную массу атома, то массу атома можно считать равной сумме масс нейтронов и протонов.

Исходя из всего вышесказанного, глядя на структурный символ кислорода, можно смело сказать, что в его атоме присутствует 8 электронов.

  • O - химический символ элемента (кислород);
  • 16 - массовое число;
  • 8 - порядковый (атомный) номер.

Атомы одного элемента, имеющие один и тот же заряд ядра, но различные массовые числа, называются изотопами .

Изотопы водорода:

  • 1 1 H - протий;
  • 1 2 H - дейтерий;
  • 1 3 H - тритий;

Инструкция

Протон представляет собой положительно с массой превышающей в 1836 раз массу . Электрический совпадает по модулю с зарядом электрона, а значит, заряд протона равен 1,6*10 ^ (-19) Кулон. Ядра разных атомов содержат разное число . К примеру, в ядре атома водорода только один , а в ядре атома золота – семьдесят девять. Число протонов в ядре совпадает с порядковым номером данного элемента в таблице Д.И. Менделеева. Поэтому для того, чтобы определить число протонов в ядре , нужно взять таблицу Менделеева, найти в ней нужный элемент. Указанное вверху целое число является порядковым номером элемента - это и есть число протонов в ядре. Пример1. Пусть нужно определить число протонов в ядре атома полония. Найдите в таблице Менделеева химический , он расположен под номером 84, значит в его ядре находится 84 протона.

Интересно, что количество протонов в ядре совпадает с числом электронов, движущихся вокруг ядра. То есть число электронов элемента определяется так же, как и число протонов – порядковым номером элемента. Пример 2. Если полония - 84, то в нем 84 протона (в ядре) и столько же - 84 электронов.

Нейтрон представляет собой незаряженную частицу с массой, которая больше массы электрона в 1839 раз. Помимо порядкового номера, в периодической таблице химических элементов для каждого вещества указано еще одно число, которое, если его округлить, показывает общее количество частиц (протонов и нейтронов ) в атомном ядре. Это число называется массовым числом. Для определения количества нейтронов в ядре нужно вычесть из массового числа количество протонов . Пример 3. Количество протонов в полония – 84. Его массовое число равно 210, значит, для определения числа нейтронов найдите разность массового числа и порядкового номера: 210 – 84 = 126.

Атом химического элемента состоит из атомного ядра и электронов. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, так как протоны и нейтроны намного тяжелее электронов.

Вам понадобится

  • атомный номер элемента, изотопы

Инструкция

В отличие от протонов, нейтроны не имеют электрического заряда, то есть их равен нулю. Поэтому, зная атомный номер элемента, нельзя однозначно сказать, сколько нейтронов содержится в его ядре. К примеру в ядре атома всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер химического элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть как природными, так и полученными искусственно.

Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

У разных одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные . Например, обычное ядро не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

Видео по теме

Источники:

  • Строение атомного ядра в 2019
  • как найти количество нейтронов в 2019

Чтобы найти количество протонов в атоме, определите его место в таблице Менделеева. Найдите его порядковый номер в периодической таблице. Он будет равен количеству протонов в атомном ядре. Если исследуется изотоп, посмотрите на пару чисел, описывающие его свойства, нижнее число будет равно количеству протонов. В том случае, если известен заряд атомного ядра, можно узнать количество протонов, поделив его значение на заряд одного протона.

Вам понадобится

  • Для того чтобы найти количество протонов, узнайте значение заряда протона или электрона, возьмите таблицу изотопов, периодическую таблицу Менделеева.

Инструкция

Определение количества протонов известного атома.В том случае, когда известно, какой атом исследуется, найдите его расположение в . Определите его номер в этой таблице, найдя ячейку соответствующего элемента. В данной ячейке найдите порядковый номер элемента, который соответствует изучаемому атому. Этот порядковый номер и будет соответствовать количеству протонов в атомном ядре.

Как найти в изотопе.Многие атомы имеют изотопы, отличающиеся ядер. Именно поэтому только лишь массы ядра недостаточно для однозначного определения атомного ядра. При описании изотопа перед записью его химического обозначения всегда записывается пара чисел. Верхнее число показывает массу атома в атомных единицах массы, а нижнее заряд ядра. Каждая единица заряда ядра в такой записи соответствует одному протону. Таким образом, количество протонов равно нижнему числу в записи данного изотопа.

Как найти протоны, зная заряд ядра.Часто атома зарядом его ядра. Для того чтобы определить количество протонов в нем, необходимо перевести его в кулоны (если он подан в кратных единицах). Затем поделите заряд ядра на модуль . Это связано с тем, что поскольку атом электрически нейтрален, то количество протонов в нем равно количеству . Причем заряды их равны по модулю и противоположны по знаку (протон имеет положительный заряд, электрон – отрицательный). Поэтому заряд ядра атома поделите на число 1,6022 10^(-19) кулон. В результате получится количество протонов. Поскольку измерения заряда атома недостаточно точны, в том случае, если при делении получилось число, округлите его до целого.

Видео по теме

Источники:

  • протонное число в 2019

Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

Модель атома

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопы и число протонов

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

Примеры

В качестве примера можно рассмотреть изотопы водорода. В природе

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .