В каких точках синус меняется на косинус. Формулы приведения тригонометрических функций

Определение. Формулами приведения называют формулы, которые позволяют перейти от тригонометрических функций вида к функциям аргумента . С их помощью синус, косинус, тангенс и котангенс произвольного угла можно привести к синусу, косинусу, тангенсу и котангенсу угла из интервала от 0 до 90 градусов (от 0 до радиан). Таким образом, формулы приведения позволяют нам переходить к работе с углами в пределах 90 градусов, что, несомненно, очень удобно.

Формулы приведения:


Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет

2. Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Пример:

Вычислить

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен "+". Значит у приведенной функции тоже будет знак «+». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет.

2. Правило «каким ты был, таким ты и остался».

Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Вычислить Sin(150˚)

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен +. Значит у приведенной функции тоже будет знак «плюс». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

При желании все формулы приведения можно свести в одну таблицу. Но все же легче запомнить эти два правила и пользоваться ими.

Нужна помощь в учебе?



Предыдущая тема:

Тема урока

  • Изменение синуса, косинуса и тангенса при возрастании угла.

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Познакомится с закономерностью изменений значений синуса косинуса и тангенса при возрастании угла.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить знания учащихся.

План урока

  1. Повторение ранее изученного материала.
  2. Задачи на повторение.
  3. Изменение синуса, косинуса и тангенса при возрастании угла.
  4. Практическое применение.

Повторение ранее изученного материала

Начнем с самого начала и вспомним то что будет полезно освежить в памяти. Что же такое синус, косинус и тангенс и к какому разделу геометрии относятся эти понятия.

Тригонометрия - это такое сложное греческое слово: тригонон - треугольник, метро - мерять. Стало быть по-гречески это означает: мерятся треугольниками.

Предмети > Математика > Математика 8 класс

Урок и презентация на тему: "Применение формул приведения при решении задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
1С: Школа. Интерактивные задания на построение для 7-10 классов
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов

Что будем изучать:
1. Немного повторим.
2. Правила для формул приведения.
3. Таблица преобразований для формул приведения.
4. Примеры.

Повторение тригонометрических функций

Ребята, с формулами привидения вы уже сталкивались, но так их еще не называли. Как думаете: где?

Посмотрите на наши рисунки. Правильно, когда вводили определения тригонометрических функций.

Правило для формул приведения

Давайте введем основное правило: Если под знаком тригонометрической функции содержится число вида π×n/2 + t, где n – любое целое число, то нашу тригонометрическую функцию можно привести к более простому виду, которая будет содержать только аргумент t. Такие формулы и называют формулами привидения.

Вспомним некоторые формулы:

  • sin(t + 2π*k) = sin(t)
  • cos(t + 2π*k) = cos(t)
  • sin(t + π) = -sin(t)
  • cos(t + π) = -cos(t)
  • sin(t + π/2) = cos(t)
  • cos(t + π/2) = -sin(t)
  • tg(t + π*k) = tg(x)
  • ctg(t + π*k) = ctg(x)

формул привидения очень много, давайте составим правило по которому будем определять наши тригонометрические функции при использовании формул привидения :

  • Если под знаком тригонометрической функции содержатся числа вида: π + t, π - t, 2π + t и 2π - t, то функция не изменится, то есть, например, синус останется синусом, котангенс останется котангенсом.
  • Если под знаком тригонометрической функции содержатся числа вида: π/2 + t, π/2 - t,
    3π/2 + t и 3π/2 - t, то функция изменится на родственную, т. е. синус станет косинусом, котангенс станет тангенсом.
  • Перед получившийся функцией, надо поставить тот знак, который имела бы преобразуемая функция при условии 0

Эти правила применимы и когда аргумент функции задан в градусах!

Так же мы можем составить таблицу преобразований тригонометрических функций:



Примеры применения формул приведения

1.Преобразуем cos(π + t). Наименование функции остается, т.е. получим cos(t). Далее предположим, что π/2

2. Преобразуем sin(π/2 + t). Наименование функции изменяется, т.е. получим cos(t). Далее предположим что 0 sin(t + π/2) = cos(t)



3. Преобразуем tg(π + t). Наименование функции остается, т.е. получим tg(t). Далее предположим, что 0

4. Преобразуем ctg(270 0 + t). Наименование функции изменяется, то есть получим tg(t). Далее предположим что 0

Задачи с формулами приведения для самостоятельного решения

Ребята, преобразуйте самостоятельно, используя наши правила:

1) tg(π + t),
2) tg(2π - t),
3) ctg(π - t),
4) tg(π/2 - t),
5) ctg(3π + t),
6) sin(2π + t),
7) sin(π/2 + 5t),
8) sin(π/2 - t),
9) sin(2π - t),
10) cos(2π - t),
11) cos(3π/2 + 8t),
12) cos(3π/2 - t),
13) cos(π - t).

Как запомнить формулы приведения тригонометрических функций? Это легко, если использовать ассоциацию.Данная ассоциация придумана не мной. Как уже говорилось, хорошая ассоциация должна «цеплять», то есть вызывать яркие эмоции. Не могу назвать эмоции, вызываемые этой ассоциацией, позитивными. Но она дает результат — позволяет запоминать формулы приведения, а значит, имеет право на существование. В конце концов, если она вам не понравится, вы же ее можете не использовать, правильно?

Формулы приведения имеют вид: sin(πn/2±α), cos(πn/2±α), tg(πn/2±α), ctg(πn/2±α). Запоминаем, что +α дает движение против часовой стрелки, — α — движение по часовой стрелке.

Для работы с формулами приведения нужны два пункта:

1) ставим знак, который имеет начальная функция (в учебниках пишут: приводимая. Но, чтобы не запутаться, лучше назвать ее начальной), если считать α углом I четверти, то есть маленьким.

2) Горизонтальный диаметр — π±α, 2π±α, 3π±α… — в общем, когда нет дроби — название функции не меняет. Вертикальный π/2±α, 3π/2±α, 5π/2±α…- когда дробь есть — название функции меняет: синус — на косинус, косинус — на синус, тангенс — на котангенс и котангенс — на тангенс.

Теперь, собственно, ассоциация:

вертикальный диаметр (есть дробь) —

пьяный стоит. Что с ним случится рано

или поздно? Правильно, упадет.

Название функции изменится.

Если же диаметр горизонтальный — пьяный уже лежит. Спит, наверное. С ним уже ничего не случится, он уже принял горизонтальное положение. Соответственно, название функции не меняется.

То есть sin(π/2±α), sin(3π/2±α), sin(5π/2±α) и т.д. дают ±cosα,

а sin(π±α), sin(2π±α), sin(3π±α), … — ±sinα.

Как , уже знаем.

Как это работает? Смотрим на примерах.

1) cos(π/2+α)=?

Становимся на π/2. Поскольку +α — значит, идем вперед, против часовой стрелки. Попадаем во II четверть, где косинус имеет знак «-«. Название функции меняется («пьяный стоит», значит — упадет). Итак,

cos(π/2+α)=-sin α.

Становимся на 2π. Так как -α — идем назад, то есть по часовой стрелке. Попадаем в IV четверть, где тангенс имеет знак «-«. Название функции не меняется (диаметр горизонтальный, «пьяный уже лежит»). Таким образом, tg(2π-α)=- tgα.

3) ctg²(3π/2-α)=?

Примеры, в которых функция возводится в четную степень, решаются еще проще. Четная степень «-» убирает, то есть надо только выяснить, меняется название функции или остается. Диаметр вертикальный (есть дробь, «пьяный стоит», упадет), название функции меняется. Получаем: ctg²(3π/2-α)= tg²α.