Применение реактивного движения презентация. Презентация к уроку- реактивное движение

Слайд 1

РЕАКТИВНОЕ ДВИЖЕНИЕ
Цигарева Л.А.

Слайд 3

Живая природа- первоисточник реактивного движения

Слайд 4

Слайд 5

Слайд 6

ЛИЧИНКИ СТРЕКОЗЫ

Слайд 7

История возникновения реактивных двигателей
Еще в первом веке нашей эры, одним из великих ученых древней Греции, Героном Александрийским был написан трактат «Пневматика». В нем описывались машины использовавшие энергию тепла. Под номером 50 описывается устройство под названием Эолипил - шар «Эола». Данное устройство представляло собой бронзовый котел, установленный на опоры. От крышки котла вверх поднимались две трубки, на которых крепилась сфера. Трубки соединялись со сферой таким образом, что она могла свободно вращаться в месте соединения. При этом по этим трубка в сферу мог поступать пар из котла. Из сферы выходили две трубки изогнутые так, что пар, выходивший из них, вращал сферу.

Слайд 8

Принцип работы устройства был прост. Под котлом разводили огонь, и когда вода начинала кипеть, пар через трубки поступал в сферу, откуда под давлением вырывался наружу, раскручивая сферу. Принято считать, что Эолипил в древней Греции использовался только с целью развлечения. Фактически, Эолипил являлся первой известной нам паровой турбиной.
Первые представления о реактивном движении

Слайд 9

ЭОЛИПИЛ - Первая паровая машина 1 – 2 вв. н.э.
H2 O
Создатель – Герон Александрийский
Q

Слайд 10

Китайцы- первые, кто использовал принцип реактивного движения

Слайд 11

Слайд 12

g

3 марта 1849 г. полевой инженер штабс-капитан Третесский обратился к кавказскому наместнику - князю Воронцову с предложением построить управляемый аэростат. К записке были приложены: труд «О способах управлять аэростатами, предположения полевого инженера штабс-капитана Третесского» и наклеенный на холст подробный чертеж. Аэростат, имевший оболочку удлиненной формы, был разделен внутри на отсеки, чтобы в случае прорыва оболочки «газ не мог выйти весь из аэростата». Двигать аэростат должна была реактивная сила, возникавшая в результате выхода газов через отверстие на корме аэростата.

Слайд 13

Кибальчич Н. И.1853-1881

Слайд 14

Слайд 15

показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
(1857-1935), русский ученый, пионер космонавтики и ракетной техники. Родился 17 (29) сентября 1857 в селе Ижевское под Рязанью.
Константин Эдуардович Циолковский

Слайд 16

К.Э.Циолковский разработал основы теории реактивного движения и конструкцию жидкостного реактивного двигателя.

Слайд 17

Проекты Циолковского были осуществлены в нашей стране выдающимся учёным и конструктором С.П.Королёвым
Сергей Павлович Королёв (30 декабря 1906 (12 января 1907), Житомир - 14 января 1966, Москва) - советский учёный, конструктор и организатор производства ракетно-космической техники и ракетного оружия СССР.
Сергей Павлович Королёв

Слайд 18

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» на основании закона сохранения импульса можно записать:
ЗСИ В РЕАКТИВНОМ ДВИЖЕНИИ

Слайд 19

Что такое реактивный двигатель?
Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Слайд 20

g
Составные части реактивного двигателя
Любой реактивный двигатель должен иметь по крайней мере две составные части: Камера сгорания («химический реактор») - в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов. Реактивное сопло («газовый туннель») - в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем создавая реактивную тягу.

Слайд 21

g
Классы реактивных двигателей
Существует два основных класса реактивных двигателей:
Воздушно-реактивные двигатели - тепловые двигатели, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха. Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Слайд 22

Слайд 23

Слайд 24

g
Н.Е.Жуковский, "отец русской авиации", впервые разработавший основные вопросы теории реактивного движения, является по праву основоположником этой теории.
Создание первых реактивных двигателей
Николай Егорович Жуковский

Слайд 25

Учёными были проведены исследования воздействия на животных большинства факторов разного характера: изменённой силы тяжести, вибрации и перегрузок, звуковых и шумовых раздражителей различной интенсивности, воздействия космического излучения, гипокинезии и гиподинамии. При проведении таких экспериментов в СССР, дополнительно производились испытания систем аварийного спасения головных частей ракет с пассажирами.
Животные в космосе

Слайд 26

Собаки в космосе
Лайка
Дезик и Цыган
Отважная и Малёк
Лисичка и Чайка

Слайд 27

Белка и Стрелка
Основной целью эксперимента было исследование влияния факторов космического полёта на организм животных и других биологических объектов, изучение действия космической радиации на животные и растительные организмы, на состояние их жизнедеятельности и наследственность.
Советские собаки-космонавты, совершившие орбитальный космический полёт и вернувшиеся на Землю невредимыми. Полёт проходил на корабле «Спутник-5». Старт состоялся 19 августа 1960 года, продолжался более 25 часов, за это время корабль совершил 17 полных витков вокруг Земли.

Слайд 28

Кошки в космосе
Считается, что успешный суборбитальный полёт совершил кот Феликс, но многие источники утверждают: первый полёт совершила кошка Фелисетт. 18 октября 1963 года Франция запустила в околоземное пространство ракету с кошкой. В подготовке к полёту принимало участие 12 животных и главным кандидатом был Феликс. Он прошёл интенсивную подготовку и был утверждён на полёт. Но незадолго до запуска кот сбежал, и его срочно заменили Фелисетт.

Слайд 29

Всего в космос летали 32 обезьяны. Были использованы: макаки-резусы, макаки-крабоеды и обыкновенные беличьи обезьяны, а также свинохвостые макаки. В рамках программы Меркурий в США летали шимпанзе Хэм и Энос.

Слайд 30

Черепахи в космосе
21 сентября 1968 года спускаемый аппарат «Зонда-5» вошёл по баллистической траектории в атмосферу Земли и приводнился в акватории Индийского океана. На борту были обнаружены черепахи. После возвращения на Землю черепахи были активными, с аппетитом ели. За время эксперимента они потеряли в весе около 10%. Исследование крови не выявило каких-либо существенных отличий. СССР также запускал черепах в орбитальные полёты на борту беспилотного космического корабля «Союз-20». 3 февраля 2010 года две черепахи совершили успешный суборбитальный полёт на ракете, запущенной Ираном.

g
Создание первых реактивных двигателей
Хотя первый патент на работоспособный газотурбинный(турбореактивный) двигатель был получен Фрэнком Уиттлом, но фон Охайн опередил Уиттла в практическом воплощении конструкции турбореактивного двигателя, положив начало практической реактивной авиации.
Турбореактивный самолет Хейнкель 178 с двигателем Охайна

Слайд 34


Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах.

Слайд 35

Практическое применение реактивных двигателей
Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах.




Реактивное движение


Реактивная сила

возникает без какого-либо взаимодействия с внешними телами.

Например, если запастись достаточным количеством мячей, то лодку можно разогнать и без помощи весел, действием только одних внутренних сил. Толкая мяч, человек (а значит и лодка) сам получает толчок согласно закону сохранения импульса.


Реактивное движение

По принципу реактивного движения передвигаются некоторые представители животного мира, например, кальмары и осьминоги. Периодически выбрасывая, вбираемую в себя воду они способны развивать скорость 60 - 70 км/ч.



К.Э. Циолковский

великий русский учёный и изобретатель, открыл принцип реактивного движения, которого по праву считают основоположником ракетной техники


К. Э. Циолковский -

русский учёный, изобретатель и учитель.

  • разработал теорию движения ракет;
  • вывел формулу для расчёта скорости ракет на орбите;
  • был первым, кто предложил использовать многоступенчатые ракет.

Одно из главнейших изобретений человечества

в XX веке – это изобретение реактивного двигателя, который позволил человеку подняться в космос.


Устройство ракеты-носителя

  • Космический корабль
  • Приборный отсек
  • Бак с окислителем
  • Бак с горючим
  • Насосы
  • Камера сгорания
  • Сопло

Сопло – раструбы специальной формы, через которые газы из камеры сгорания мощной струёй устремляются наружу .

Назначение сопла –

повысить скорость струи .

С какой целью увеличивают скорость выхода струи газа?


Р ракеты

Ракета

М р υ р = m газа υ газа

m газа

υ р =

υ газа

М р

  • головная часть (космический корабль,

приборный отсек);

  • бак с окислителем и бак с топливом

(в качестве топлива может использоваться,

например, жидкий водород, а в качестве окислителя жидкий кислород);

  • насосы, камера сгорания топлива;
  • сопло (сужение камеры для увеличения скорости истечения продуктов сгорания).

Р газа


"Если моя идея... будет признана исполнимой, то я буду счастлив тем, что окажу громадную услугу Родине и человечеству. Я спокойно тогда встречу смерть, зная, что моя идея не погибнет вместе со мной, а будет существовать среди человечества, для которого я готов был пожертвовать своей жизнью".





ГИРД – группа изучения реактивного

движения

Создана 15 сентября 1931 г. из секции реактивных двигателей при Бюро воздушной техники Центрального Совета Осоавиахима. Группа состояла из 4 бригад, занимающихся различными задачами.

1 бригада (руководитель Цандер Ф.А.) двигатели

2 бригада (руководитель Тихонравов М.К.) изделия на основе двигателей

3 бригада (руководитель Победоносцев Ю.А.) воздушные реактивные двигатели

4 бригада (руководитель Королев С.П.) конструкции летательных аппаратов


Реактивное движение –

движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Примеры реактивного

движения:

- кальмары

- осьминоги

- самолеты

- ракеты

- Катер с водометным двигателем

Ученые:

- Циолковский К.Э.

- Кибальчич Н.И.

- Королев С.П.

- Цандер Ф.А.

  • Тихонравов М.К.
  • Победоносцев Ю.А.


История

Пороховые ракеты – Китай X в. (фейерверочные и сигнальные)

Боевые ракеты (Индия против Англии – XVIII в.)

Россия – Крымская война,

Русско – турецкие войны

Н.И. Кибальчич (1853 - 1881)

Реактивный летательный аппарат

К.Э.Циолковский – 1903г.

ЖРД – жидкостные реактивные двигатели

С.П. Королёв – 1957 г. – ИЗС

Ю.А. Гагарин – 1961 г.

Пилотируемый космический корабль


«Сначала можно летать на ракетах вокруг Земли, затем можно описать тот или иной путь относительно Солнца, достигнуть желаемой планеты, приблизиться или удалиться от Солнца…

Человечество образует ряд межпланетных баз вокруг Солнца…

Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиона раз большую, чем та, которую человечество имеет на Земле»

(План завоевания мировых пространств К.Э.Циолковского)



Серов Дмитрий

Данная презентация содержит основной и дополнительный материал по реактивному движению, его проявление и испоьзование. Материал охватывает межпредметные связи, приводятся интересные технические и исторические справки.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

РЕАКТИВНОЕ ДВИЖЕНИЕ

Реактивное движение Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью V относительно тела, например при истечении продуктов горения из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила F , толкающая тело.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами. Например, если запастись достаточным количеством мячей, то лодку можно разогнать и без помощи весел, действием только одних внутренних сил. Толкая мяч, человек (а значит и лодка) сам получает толчок согласно закону сохранения импульса.

Реактивное движение – единственный вид движения, который может осуществляться без взаимодействия с окружающей средой

В конце первого тысячелетия нашей эры в Китае использовали реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Реактивное движение живых организмов По принципу реактивного движения передвигаются некоторые представители животного мира, например, кальмары и осьминоги. Они способны развивать скорость 60 - 70 км/ч.

Кальмар и осьминог движутся реактивным образом. Всасывая и с силой выталкивая воду, они скользят в волнах, точно живые ракеты. Бешеный огурец растет на побережье Черного моря. Стоит только слегка прикоснуться к созревшему плоду,похожему на огурчик, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном бьют семена со слизью. Каракатица, медузы забирают воду в жаберную полость через щель, а затем энергично выпрыскивают струю воды через воронку тем самым довольно быстро плывут задней стороной тела вперед. Примеры реактивного движения в природе

великий русский учёный и изобретатель, открыл принцип реактивного движения, которого по праву считают основоположником ракетной техники Константин Эдуардович Циолковский (1857-1935)

Подвиньте соломинку к одному из стульев и липкой лентой прикрепите к ней шарик. Подвиньте шарик к одному из стульев и отвяжите отверстие. Соломинка с прикрепленным к ней шариком скользит по бечёвке и перестаёт двигаться при упоре в стул или при выходе всего воздуха. Опыт с воздушным шариком

Примеры реактивного движения в технике Практическое использование принципа реактивного движения: в самолетах, движущихся со скоростью в несколько тысяч километров в час, в снарядах знаменитых « Катюш», в боевых и космических ракетах

Любая ракета состоит из двух основных частей. 1) Оболочка. 2) Топливо с окислителем. Оболочка включает в себя: а) Полезный груз (космический корабль). б) Приборный отсек. в) Двигатель. Топливо и окислитель Керосин, спирт, гидразин, Азотная или хлорная кислота, анилин, бензин жидкий кислород, фтор Они подаются в камеру сгорания, где превращаются в газ высокой температуры, который через сопло устремляется наружу. При истечении продуктов сгорания топлива газы в камере сгорания получают некоторую скорость относительно ракеты и, следовательно некоторый импульс. Поэтому сама ракета по закону сохранения импульса получает такой же по модулю импульс, но направленный в противоположную сторону.

Если корабль должен совершить посадку, то ракету разворачивают на 180 градусов, чтобы сопло оказалось впереди. Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против её скорости

Формула Циолковского υ = υ 0 + 2,3 υ г Ĺġ(1+ m/M)‏ υ 0 - начальная скорость. υ г - скорость истечения газов. m - начальная масса. M - масса пустой ракеты. Т. к. газ выбрасывается не мгновенно, поэтому и уравнение Циолковского получается значительно сложнее.

Ракетный двигатель Зенитная управляемая ракета российского комплекса « Стрела 10М3 » способна поражать цели на расстоянии до 5 км и на высоте от 25 до 3500 м. РАКЕТНЫЙ ДВИГАТЕЛЬ - реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Распространены химические ракетные двигатели (разрабатывают и испытывают электрические, ядерные и другие ракетные двигатели). Простейший ракетный двигатель работает на сжатом газе. По назначению различают разгонные, тормозные, управляющие и др. Применяют на ракетах (отсюда название), самолетах и др. Основной двигатель в космонавтике.

Спасибо за внимание

Реактивное движение в природе

Реактивное движение – это движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.


Применение реактивного движения в природе

  • Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.


  • Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

  • Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету.

  • Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Летающий кальмар

Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.


  • Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

  • В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

Слайд 2

Факты из истории

  • Слайд 3

    Реактивный двигатель

    Реактивный двигатель - это двигатель, создающий необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Реактивный двигатель создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов. Рабочее тело с большой скоростью истекает из двигателя, и в соответствии с законом сохранения импульса образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой температуры

    Слайд 4

    Космическая ракета

    Ракета- летательный аппарат, двигающийся за счёт реактивной силы, возникающей при отбросе части собственной массы. Полёт ракеты не требует обязательного наличия окружающей воздушной или газовой среды и возможен не только в атмосфере, но и в вакууме. Ракета является транспортным средством способным вывести космический аппарат в космос. Альтернативные способы поднимать космические аппараты на орбиту, такие как «космический лифт», пока что находятся на стадии проектирования. Используемые для нужд космонавтики ракеты называются ракеты-носители, так как они несут на себе полезную нагрузку. Чаще всего в качестве ракет-носителей используются многоступенчатые баллистические ракеты. Старт ракеты-носителя происходит с Земли, или, в случае долгого полёта, с орбиты искусственного спутника Земли. В настоящее время космическими агентствами разных стран используются ракеты-носители Атлас V, Ариан 5, Протон, Дельта IV, Союз-2 и многие другие.

    Слайд 5

    Космические шатлы

    Шаттл - американский многоразовыйтранспортный космический корабль. Шаттл запускается в космос с помощью ракет-носителей, осуществляет манёвры на орбите как космический корабль и возвращается на Землю как самолёт. Подразумевалось, что шаттлы будут сновать, как челноки, между околоземной орбитой и Землей, доставляя полезные грузы в обоих направлениях. При разработке предусматривалось, что каждый из шаттлов должен был до 100 раз стартовать в космос. На практике же они используются значительно меньше. К сентябрю 2009 года больше всего полётов - 37 - совершил шаттл «Дискавери». Всего с 1975 по 1991 год было построено пять шаттлов: «Колумбия» (сгорел при посадке в 2003), «Челленджер» (взорвался при старте в 1986), «Дискавери», «Атлантис» и «Индевор». В конце 2010 года «Спейс шаттл» совершит свой последний полёт.

    Слайд 6

    Кальмар

    Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие - "воронку", и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

    Слайд 7

    Константин Эдуардович Циолковский

    Константин Эдуардович Циолковский (1857-1935) - российский и советский учёный-самоучка, исследователь, школьный учитель. Основоположник современной космонавтики. Обосновал вывод уравнения реактивного движения, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Автор работ по аэродинамике, воздухоплаванию и другим. Представитель русского космизма, член Русского общества любителей мироведения. Автор научно-фантастических произведений, сторонник и пропагандист идей освоения космического пространства. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идеи космического лифта, поездов на воздушной подушке. Считал, что развитие жизни на одной из планет Вселенной достигнет такого могущества и совершенства, что это позволит преодолевать силы тяготения и распространять жизнь по Вселенной.

    Слайд 8

    Рабочее тело

    Рабочее тело -материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа. На практике рабочим телом реактивных двигателей являются продукты сгорания углеводородного топлива (бензина, дизельного топлива и др.)

    Посмотреть все слайды