Что такое прямая и обратная пропорциональные зависимости. Обратная пропорциональность в математике и в жизни

Прямая и обратная пропорциональности

Если t - время движение пешехода (в часах), s - пройденный путь (в километрах), и он движется равномерно со скоростью 4 км/ч, то зависимость между этими величинами можно выразить формулой s = 4t. Так как каждому значению t соответствует единственное значение s, то можно говорить о том, что с помощью формулы s = 4t задана функция. Ее называют прямой пропорциональностью и определяют следующим образом.

Определение. Прямой пропорциональностью называется функция, которая может быть задана при помощи формулы у=kх, где k - неравное нулю действительное число.

Название функции у = k х связано с тем, что в формуле у = kх есть переменные х и у, которые могут быть значениями величин. А если отношение двух величин равно некоторому числу, отличному от нуля, их называют прямо пропорциональными . В нашем случае = k (k≠0). Это число называют коэффициентом пропорциональности.

Функция у = k х является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана выше. Другой пример: если в одном пакете муки 2 кг, а куплено х таких пакетов, то всю массу купленной муки (обозначим ее через у) можно представить в виде формулы у = 2х, т.е. зависимость между количеством пакетов и всей массой купленной муки является прямой пропорциональностью с коэффициентом k=2.

Напомним некоторые свойства прямой пропорциональности, которые изучаются в школьном курсе математики.

1. Областью определения функции у = k х и областью ее значений является множество действительных чисел.

2. Графиком прямой пропорциональности является прямая, проходящая через начало координат. Поэтому для построения графика прямой пропорциональности достаточно найти лишь одну точку, принадлежащую ему и не совпадающую с началом координат, а затем через эту точку и начало координат провести прямую.

Например, чтобы построить график функции у = 2х, достаточно иметь точку с координатами (1, 2), а затем через нее и начало координат провести прямую (рис. 7).

3. При k > 0 функция у = kх возрастает на всей области определения; при k < 0 - убывает на всей области определения.

4. Если функция f - прямая пропорциональность и (х 1 , у 1), (х 2 , у 2) - пары соответственных значений переменных х и у, причем х 2 ≠0 то .

Действительно, если функция f - прямая пропорциональность, то она может быть задана формулой у=kх, и тогда у 1 = kх 1 , у 2 = kх 2 . Так как при х 2 ≠0 и k≠0, то у 2 ≠0. Поэтому и значит .

Если значениями переменных х и у служат положительные действительные числа, то доказанное свойство прямой пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у увеличивается (уменьшается) во столько же раз.

Это свойство присуще только прямой пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются прямо пропорциональные величины.

Задача 1. За 8 ч токарь изготовил 16 деталей. Сколько часов потребуется токарю на изготовление 48 деталей, если он будет работать с той же производительностью?

Решение. В задаче рассматриваются величины - время работы токаря, количество сделанных им деталей и производительность (т.е. количество деталей, изготавливаемых токарем за 1 ч), причем последняя величина постоянна, а две другие принимают различные значения. Кроме того количество сделанных деталей и время работы- величины прямо пропорциональные, так как их отношение равно некоторому числу, не равному нулю, а именно - числу деталей, изготавливаемых токарем за 1 ч. Если количество сделанных деталей обозначить буквой у, время работы х, а производительность - k, то получим, что = k или у = kх, т.е. математической моделью ситуации, представленной в задаче, является прямая пропорциональность.

Решить задачу можно двумя арифметическими способами:

1 способ: 2 способ:

1) 16:8 = 2 (дет.) 1) 48:16 = 3 (раза)

2) 48:2 = 24(ч) 2) 8-3 = 24 (ч)

Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности к, он равен 2, а затем, зная, что у = 2х, нашли значение х при условии, что у = 48.

При решении задачи вторым способом мы воспользовались свойством прямой пропорциональности: во сколько раз увеличивается количество деталей, сделанных токарем, во столько же раз увеличивается и количество времени на их изготовление.

Перейдем теперь к рассмотрению функции, называемой обратной пропорциональностью.

Если t - время движения пешехода (в часах), v - его скорость (в км/ч) и он прошел 12 км, то зависимость между этими величинами можно выразить формулой v∙t = 20 или v = .

Так как каждому значению t (t ≠ 0) соответствует единственное значение скорости v, то можно говорить о том, что с помощью формулы v = задана функция. Ее называют обратной пропорциональностью и определяют следующим образом.

Определение. Обратной пропорциональностью называется функция, которая может быть задана при помощи формулы у = , где k - неравное нулю действительное число.

Название данной функции связано с тем, что в у = есть переменные х и у, которые могут быть значениями величин. А если произведение двух величин равно некоторому числу, отличному от нуля, то их называют обратно пропорциональными. В нашем случае ху = k(к ≠0). Это число k называют коэффициентом пропорциональности.

Функция у = является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана перед определением обратной пропорциональности. Другой пример: если купили 12 кг муки и разложили ее в л: банок по у кг в каждую, то зависимость между данными величинами можно представить в виде х-у = 12, т.е. она является обратной пропорциональностью с коэффициентом k=12.

Напомним некоторые свойства обратной пропорциональности, известные из школьного курса математики.

1.Областью определения функции у = и областью ее значений х является множество действительных чисел, отличных от нуля.

2. Графиком обратной пропорциональности является гипербола.

3. При k > 0 ветви гиперболы расположены в 1 -й и 3-й четвертях и функция у = является убывающей на всей области определения х (рис. 8).

Рис. 8 Рис.9

При к < 0 ветви гиперболы расположены во 2-й и 4-й четвертях и функция у = является возрастающей на всей области определения х (рис. 9).

4. Если функция f - обратная пропорциональность и (х 1 , у 1), (х 2 , у 2) - пары соответственных значений переменных х и у, то .

Действительно, если функция f - обратная пропорциональность, то она может быть задана формулой у = ,и тогда . Так как х 1 ≠0, х 2 ≠0, х 3 ≠0, то

Если значениями переменных х и у служат положительные действительные числа, то это свойство обратной пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у уменьшается (увеличивается) во столько же раз.

Это свойство присуще только обратной пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассматриваются обратно пропорциональные величины.

Задача 2. Велосипедист, двигаясь со скоростью 10 км/ч, проехал расстояние от А до В за 6 ч. Сколько времени потратит велосипедист на обратный путь, если будет ехать со скоростью 20 км/ч?

Решение. В задаче рассматриваются величины: скорость движения велосипедиста, время движения и расстояние от А до В, причем последняя величина постоянна, а две другие принимают различные значения. Кроме того, скорость и время движения - величины обратно пропорциональные, так как их произведение равно некоторому числу, а именно пройденному расстоянию. Если время движения велосипедиста обозначить буквой у, скорость - х, а расстояние АВ - k, то получим, что ху = k или у = , т.е. математической моделью ситуации, представленной в задаче, является обратная пропорциональность.

Решить задачу можно двумя способами:

1 способ: 2 способ:

1) 10-6 = 60 (км) 1) 20:10 = 2 (раза)

2) 60:20 = 3(4) 2) 6:2 = 3(ч)

Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности к, он равен 60, а затем, зная, что у = , нашли значение у при условии, что х = 20.

При решении задачи вторым способом мы воспользовались свойством обратной пропорциональности: во сколько раз увеличивается скорость движения, во столько же раз уменьшается время на прохождение одного и того же расстояния.

Заметим, что при решении конкретных задач с обратно пропорциональными или прямо пропорциональными величинами накладываются некоторые ограничения на х и у, в частности, они могут рассматриваться не на всем множестве действительных чисел, а на его подмножествах.

Задача 3. Лена купила х карандашей, а Катя в 2 раза больше. Обозначьте число карандашей, купленных Катей через у, выразите у через х и постройте график установленного соответствия при условии, что х≤5. Является ли это соответствие функцией? Какова ее область определения и область значений?

Решение. Катя купила у = 2х карандашей. При построении графика функции у=2х необходимо учесть, что переменная х обозначает количество карандашей и х≤5, значит, она может принимать только значения 0, 1, 2, 3, 4, 5. Это и будет область определения данной функции. Чтобы получить область значений данной функции, надо каждое значение х из области определения умножить на 2, т.е. это будет множество {0, 2, 4, 6, 8, 10}. Следовательно, графиком функции у = 2х с областью определения {0, 1, 2, 3, 4, 5} будет множество точек, изображенных на рисунке 10. Все эти точки принадлежат прямой у = 2х.

Пример

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности . Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой .

Прямая пропорциональность

Прямая пропорциональность - функциональная зависимость , при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально , в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

f (x ) = a x ,a = c o n s t

Обратная пропорциональность

Обра́тная пропорциона́льность - это функциональная зависимость , при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

Математически обратная пропорциональность записывается в виде формулы:

Свойства функции:

Источники

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямая пропорциональность" в других словарях:

    прямая пропорциональность - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN direct ratio … Справочник технического переводчика

    прямая пропорциональность - tiesioginis proporcingumas statusas T sritis fizika atitikmenys: angl. direct proportionality vok. direkte Proportionalität, f rus. прямая пропорциональность, f pranc. proportionnalité directe, f … Fizikos terminų žodynas

    - (от лат. proportionalis соразмерный, пропорциональный). Соразмерность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПРОПОРЦИОНАЛЬНОСТЬ отлат. proportionalis, пропорциональный. Соразмерность. Объяснение 25000… … Словарь иностранных слов русского языка

    ПРОПОРЦИОНАЛЬНОСТЬ, пропорциональности, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к пропорциональный. Пропорциональность частей. Пропорциональность телосложения. 2. Такая зависимость между величинами, когда они пропорционально (см. пропорциональный … Толковый словарь Ушакова

    Пропорциональными называются две взаимно зависимые величины, если отношение их значений остается неизменным.. Содержание 1 Пример 2 Коэффициент пропорциональности … Википедия

    ПРОПОРЦИОНАЛЬНОСТЬ, и, жен. 1. см. пропорциональный. 2. В математике: такая зависимость между величинами, при к рой увеличение одной из них влечёт за собой изменение другой во столько же раз. Прямая п. (при к рой с увеличением одной величины… … Толковый словарь Ожегова

    И; ж. 1. к Пропорциональный (1 зн.); соразмерность. П. частей. П. телосложения. П. представительства в парламенте. 2. Матем. Зависимость между пропорционально изменяющимися величинами. Коэффициент пропорциональности. Прямая п. (при которой с… … Энциклопедический словарь

Основные цели:

  • ввести понятие прямой и обратной пропорциональной зависимости величин;
  • научить решать задачи, используя эти зависимости;
  • способствовать развитию умения решать задачи;
  • закрепить навык решения уравнений с помощью пропорции;
  • повторить действия с обыкновенными и десятичными дробями;
  • развивать логическое мышление учащихся.

ХОД УРОКА

I. Самоопределение к деятельности (организационный момент)

– Ребята! Сегодня на уроке мы познакомимся с задачами, решаемыми с помощью пропорции.

II. Актуализация знаний и фиксация затруднения в деятельности

2.1. Устная работа (3 мин)

– Найдите значение выражений и узнайте слово, зашифрованное в ответах.

14 – с; 0,1 – и; 7 – л; 0,2 – а; 17 – в; 25 – к

– Получилось слово – сила. Молодцы!
– Девиз нашего урока сегодня: Сила – в знаниях! Я ищу – значит учусь!
– Составьте пропорцию из получившихся чисел. (14: 7 = 0,2: 0,1 и т.д.)

2.2. Рассмотрим зависимость между известными нам величинами (7 мин)

– путем, пройденным автомашиной с постоянной скоростью, и временем ее движения: S = v ·t (с увеличением скорости (времени) увеличивается путь);
– скоростью автомашины и затраченным на путь временем: v = S: t (с увеличением времени на прохождение пути, скорость уменьшается);
стоимостью товара, купленного по одной цене и его количеством: С = а · n (с увеличением (уменьшением) цены, увеличивается (уменьшается) стоимость покупки);
– цены товара и его количеством: а = С: n (с увеличением количества, уменьшается цена)
– площади прямоугольника и его длины (ширины): S = a · b (с увеличением длины(ширины) увеличивается площадь;
– длины прямоугольника и ширины: a = S: b (с увеличением длины уменьшается ширина;
– числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу, и временем выполнения этой работы: t = А: n (с увеличением числа рабочих время, затраченное на выполнение работы уменьшается) и т.д.

Мы получили зависимости, в которых с увеличением одной величины в несколько раз, тут же во столько же раз увеличивается другая (примеры показать стрелками) и зависимости, в которых с увеличением одной величины в несколько раз, вторая величина уменьшается в это же количество раз.
Такие зависимости называются прямыми и обратными пропорциональностями.
Прямо-пропорциональная зависимость – зависимость, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается (уменьшается) вторая величина во столько же раз.
Обратно-пропорциональная зависимость – зависимость, в которой с увеличением (уменьшением) одной величины в несколько раз, уменьшается (увеличивается) вторая величина во столько же раз.

III. Постановка учебной задачи

– Какая проблема встала перед нами? (Научиться различать прямые и обратные зависимости)
– Это – цель нашего урока. А теперь сформулируйте тему урока. (Прямая и обратная пропорциональная зависимость).
– Молодцы! Запишите тему урока в тетрадях. (Учитель записывает тему на доске.)

IV. «Открытие» нового знания (10 мин)

Разберем задачи № 199.

1. Принтер распечатывает 27 страниц за 4,5 мин. За сколько времени он распечатает 300 страниц?

27 стр. – 4,5 мин.
300 стр. – х?

2. В коробке 48 пачек чая по 250 г в каждой. Сколько получится из этого чая пачек по 150г?

48 пачек – 250 г.
х? – 150 г.

3. Автомобиль проехал 310 км, истратив 25 л бензина. Какое расстояние может проехать автомобиль на полном баке, вмещающем 40л?

310 км – 25 л
х? – 40 л

4. На одной из сцепляющих шестерен 32 зубца, а на другой – 40. Сколько оборотов сделает вторая шестерня, в то время как первая сделает 215 оборотов?

32 зубца – 315 об.
40 зубцов – х?

Для составления пропорции необходимо одно направление стрелок, для этого в обратной пропорциональности одно отношение заменяют обратным.

У доски ученики находят значение величин, на местах учащиеся решают одну на выбор задачу.

– Сформулируйте правило решения задач с прямой и обратной пропорциональной зависимостью.

На доске появляется таблица:

V. Первичное закрепление во внешней речи (10 мин)

Задания на листах:

  1. Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?
  2. Для строительства стадиона 5 бульдозеров расчистили площадку за 210 мин. За какое время 7 бульдозеров расчистили бы эту площадку?

VI. Самостоятельная работа с самопроверкой по эталону (5 мин)

Два ученика выполняют задания № 225 самостоятельно на скрытых досках, а остальные – в тетрадях. Затем они проверяют работу по алгоритму и сопоставляют с решением на доске. Ошибки исправляются, выясняются их причины. Если задание выполнено, верно, то рядом ученики ставят себе знак «+».
Учащиеся, допустившие ошибки в самостоятельной работе могут использовать консультантов.

VII. Включение в систему знаний и повторение № 271, № 270.

Шесть человек работают у доски. Через 3–4 минуты учащиеся, работавшие у доски, представляют свои решения, а остальные – проверяют задания и участвуют в их обсуждении.

VIII. Рефлексия деятельности (итог урока)

– Что нового вы узнали на уроке?
– Что повторили?
– Каков алгоритм решения задач на пропорцию?
– Мы достигли поставленной цели?
– Как оцениваете свою работу?

Две величины называются прямо пропорциональными , если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз.

Зависимость между такими величинами — прямая пропорциональная зависимость. Примеры прямой пропорциональной зависимости:

1) при постоянной скорости пройденный путь прямо пропорционально зависит от времени;

2) периметр квадрата и его сторона — прямо пропорциональные величины;

3) стоимость товара, купленного по одной цене, прямо пропорционально зависит от его количества.

Чтобы отличить прямую пропорциональную зависимость от обратной можно использовать пословицу: «Чем дальше в лес, тем больше дров».

Задачи на прямо пропорциональные величины удобно решать с помощью пропорции.

1) Для изготовления 10 деталей нужно 3,5 кг металла. Сколько металла пойдет на изготовление 12 таких деталей?

(Рассуждаем так:

1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем больше деталей, тем больше металла нужно для их изготовления. Значит, это прямо пропорциональная зависимость.

Пусть х кг металла нужно для изготовления 12 деталей. Составляем пропорцию (в направлении от начала стрелки к ее концу):

12:10=х:3,5

Чтобы найти , надо произведение крайних членов разделить на известный средний член:

Значит, потребуется 4,2 кг металла.

Ответ: 4,2 кг.

2) За 15 метров ткани заплатили 1680 рублей. Сколько стоят 12 метров такой ткани?

(1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем меньше ткани покупают, тем меньше за нее надо заплатить. Значит, это прямо пропорциональная зависимость.

3. Поэтому вторая стрелка одинаково направлена с первой).

Пусть х рублей стоят 12 метров ткани. Составляем пропорцию (от начала стрелки к ее концу):

15:12=1680:х

Чтобы найти неизвестный крайний член пропорции, произведение средних членов делим на известный крайний член пропорции:

Значит, 12 метров стоят 1344 рубля.

Ответ: 1344 рубля.

I. Прямо пропорциональные величины.

Пусть величина y зависит от величины х . Если при увеличении х в несколько раз величина у увеличивается во столько же раз, то такие величины х и у называются прямо пропорциональными.

Примеры.

1 . Количество купленного товара и стоимость покупки (при фиксированной цене одной единицы товара — 1 штуки или 1 кг и т. д.) Во сколько раз больше товара купили, во столько раз больше и заплатили.

2 . Пройденный путь и затраченное на него время (при постоянной скорости). Во сколько раз длиннее путь, во столько раз больше потратим времени на то, чтобы его пройти.

3 . Объем какого-либо тела и его масса. (Если один арбуз в 2 раза больше другого, то и масса его будет в 2 раза больше )

II. Свойство прямой пропорциональности величин.

Если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

Задача 1. Для малинового варенья взяли 12 кг малины и 8 кг сахара. Сколько сахара потребуется, если взяли 9 кг малины?

Решение.

Рассуждаем так: пусть потребуется х кг сахара на 9 кг малины. Масса малины и масса сахара — прямо пропорциональные величины: во сколько раз меньше малины, во столько же раз нужно меньше сахара. Следовательно, отношение взятой (по массе) малины (12:9 ) будет равно отношению взятого сахара (8:х ). Получаем пропорцию:

12: 9=8: х;

х=9· 8: 12;

х=6. Ответ: на 9 кг малины нужно взять 6 кг сахара.

Решение задачи можно было оформить и так:

Пусть на 9 кг малины нужно взять х кг сахара.

(Стрелки на рисунке направлены в одну сторону, а вверх или вниз — не имеет значения. Смысл: во сколько раз число 12 больше числа 9 , во столько же раз число 8 больше числа х , т. е. здесь прямая зависимость).

Ответ: на 9 кг малины надо взять 6 кг сахара.

Задача 2. Автомобиль за 3 часа проехал расстояние 264 км . За какое время он проедет 440 км , если будет ехать с той же скоростью?

Решение.

Пусть за х часов автомобиль пройдет расстояние 440 км.

Ответ: автомобиль пройдет 440 км за 5 часов.

Задача 3. Из трубы поступает вода в бассейн. За 2 часа она заполняет 1/5 бассейна. Какая часть бассейна заполняется водой за 5 часов ?

Решение.

Отвечаем на вопрос задачи: за 5 часов наполнится 1/х часть бассейна. (Весь бассейн принимается за одну целую).